UNITARITY IN ONE DIMENSIONAL NONLINEAR QUANTUM CELLULAR AUTOMATA

作者: David A. Meyer

DOI:

关键词:

摘要: Unitarity of the global evolution is an extremely stringent condition on finite state models in discrete spacetime. Quantum cellular automata, particular, are tightly constrained. In previous work we proved a simple No-go Theorem which precludes nontrivial homogeneous for linear quantum automata. Here carefully define general automata order to investigate possibility that there be unitary when local rule nonlinear. Since transition amplitudes constructed from product amplitudes, infinite lattices require different treatment than periodic ones. We prove Theorems both cases, expressing equivalence 1+1 dimensions unitarity and certain sets constraints rule, then show these can solved give variety multiparameter families nonlinear The Theorems, together with Surjectivity case, also imply decidable one dimensional

参考文章(42)
E.F. Moore, Machine Models of Self-Reproduction American Mathematical Society. ,(1962)
Arthur W. Burks, VON NEUMANN'S SELF-REPRODUCING AUTOMATA Defense Technical Information Center. ,(1969) , 10.21236/AD0688840
Christoph Dürr, Huong Lê Thanh, Miklos Santha, A Decision Procedure for Well-Formed Linear Quantum Cellular Automata symposium on theoretical aspects of computer science. pp. 281- 292 ,(1996) , 10.1007/3-540-60922-9_24
Paul Adrien Maurice Dirac, The Principles of Quantum Mechanics ,(1930)
David Hillman, The structure of reversible one-dimensional cellular automata Physica D: Nonlinear Phenomena. ,vol. 52, pp. 277- 292 ,(1991) , 10.1016/0167-2789(91)90128-V
Ethan Bernstein, Umesh Vazirani, Quantum complexity theory Proceedings of the twenty-fifth annual ACM symposium on Theory of computing - STOC '93. pp. 11- 20 ,(1993) , 10.1145/167088.167097
G. A. Hedlund, Endomorphisms and automorphisms of the shift dynamical system Theory of Computing Systems \/ Mathematical Systems Theory. ,vol. 3, pp. 320- 375 ,(1969) , 10.1007/BF01691062
Stephen Wolfram, Computation theory of cellular automata Communications in Mathematical Physics. ,vol. 96, pp. 15- 57 ,(1984) , 10.1007/BF01217347
S. Amoroso, Y.N. Patt, Decision procedures for surjectivity and injectivity of parallel maps for tessellation structures Journal of Computer and System Sciences. ,vol. 6, pp. 448- 464 ,(1972) , 10.1016/S0022-0000(72)80013-8