Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited

作者: Theodor William Melnyk , Osvald Knop , William Robert Smith

DOI: 10.1139/V77-246

关键词:

摘要: We review the formulation and solutions of a number of extremal problems associated with points and unit charges on the surface of a sphere in E3. For one of these problems, namely[Formula: see text]where dpq is the Euclidean distance between points P and Q and m is the number of points, we discuss the results for m ≤ 16 and 1 ≤ n ≤ ∞. For the cases m = 5, 11, 13–16 we find hitherto undiscovered solutions. Our solutions for m = 5 and 11 correct earlier results in the literature. We also sharpen the existing literature results for m = 7 and 10.

参考文章(2)
László Fejes Tóth (Mathematiker), Lagerungen in der Ebene auf der Kugel und im Raum The Mathematical Gazette. ,vol. 39, pp. 73- ,(1953) , 10.1007/978-3-642-65234-9
James W. Daniel, On the approximate minimization of functionals Mathematics of Computation. ,vol. 23, pp. 573- 581 ,(1969) , 10.1090/S0025-5718-1969-0247746-7