On the approximate minimization of functionals

作者: James W. Daniel

DOI: 10.1090/S0025-5718-1969-0247746-7

关键词:

摘要: This paper considers in general the problem of finding minimum a given functional f(u) over set B by approximately minimizing sequence functionals fn(un) "discretized" Bn; theorems are proving convergence approximating points un Bn to desired point u B. Applications Rayleigh-Ritz method, regularization, Chebyshev solution differential equations, and calculus variations. 1. Introduction. Many theoretical computational problems either arise or can be formulated as one locating some real-valued (non- linear) certain set; such variational settings often lead existence well methods for solving question. Computationally, however, is generally forced deal with discrete data place original functional; it therefore necessary analyze relationships between their discretized analogues. In (7, Section 4), we first studied under equicontinuity assumptions question nearby functionals. this present note state generally, give theorems, describe particular examples.

参考文章(12)
J.-P. Aubin, Approximation des espaces de distributions et des opérateurs différentiels Mémoires de la Société mathématique de France. ,vol. 12, pp. 3- 139 ,(1967) , 10.24033/MSMF.12
P. G. Ciarlet, M. H. Schultz, R. S. Varga, Numerical methods of high-order accuracy for nonlinear boundary value problems Numerische Mathematik. ,vol. 13, pp. 120- 133 ,(1968) , 10.1007/BF02162155
Jean-Pierre Aubin, Evaluation des erreurs de troncature des approximations des espaces de Sobolev Journal of Mathematical Analysis and Applications. ,vol. 21, pp. 356- 368 ,(1968) , 10.1016/0022-247X(68)90218-7
J. B. Rosen, Approximate Solution and Error Bounds for Quasi-Linear Elliptic Boundary Value Problems SIAM Journal on Numerical Analysis. ,vol. 7, pp. 80- 103 ,(1970) , 10.1137/0707004
Angus E. Taylor, P. J. Davis, Introduction to functional analysis ,(1958)
Murray H. Protter, Hans F. Weinberger, Maximum principles in differential equations ,(1967)
E. H. Rothe, M. M. Vainberg, L. M. Kantorovich, G. P. Akilov, Amiel Feinstein, Variational Methods for the Study of Nonlinear Operators American Mathematical Monthly. ,vol. 73, pp. 1134- ,(1966) , 10.2307/2314669
O. L. Mangasarian, Pseudo-Convex Functions Journal of the Society for Industrial and Applied Mathematics Series A Control. ,vol. 3, pp. 281- 290 ,(1965) , 10.1137/0303020
James W. Daniel, Collectively Compact Sets of Gradient Mappings Indagationes Mathematicae (Proceedings). ,vol. 71, pp. 270- 279 ,(1968) , 10.1016/S1385-7258(68)50031-3