Invariants of B-Type Links Via an Extension of the Kauffman Bracket

作者: P. P. Kulish , A. M. Nikitin

DOI: 10.1023/A:1021198210356

关键词:

摘要: We construct invariants of solid torus links (\(B\)-type invariants) generalizing the Kauffman bracket. These give us expressions statistical sums in some special cases. Bibliography: 29 titles.

参考文章(25)
Tetsuo Deguchi, Miki Wadati, Yasuhiro Akutsu, Knot Theory based on Solvable Models at Criticality Integrable Systems in Quantum Field Theory and Statistical Mechanics. ,vol. 19, pp. 193- 285 ,(1989) , 10.1016/B978-0-12-385342-4.50013-5
M. Kontsevich, Vassiliev’s knot invariants ADVSOV. pp. 137- 150 ,(1993) , 10.1090/ADVSOV/016.2/04
Jim Hoste, Mark E. Kidwell, Dichromatic link invariants Transactions of the American Mathematical Society. ,vol. 321, pp. 197- 229 ,(1990) , 10.1090/S0002-9947-1990-0961623-2
Tammo tom Dieck, Categories of rooted cylinder ribbons and their representations Journal für die reine und angewandte Mathematik (Crelles Journal). ,vol. 1998, pp. 35- 63 ,(1998) , 10.1515/CRLL.1998.010
P. P. Kulish, Quantum groups,q oscillators, and covariant algebras Theoretical and Mathematical Physics. ,vol. 94, pp. 137- 141 ,(1993) , 10.1007/BF01019325
V. F. R. Jones, Index for subfactors Inventiones Mathematicae. ,vol. 72, pp. 1- 25 ,(1983) , 10.1007/BF01389127
V.G. Turaev, O.Y. Viro, State sum invariants of 3 manifolds and quantum 6j symbols Topology. ,vol. 31, pp. 865- 902 ,(1992) , 10.1016/0040-9383(92)90015-A