ON DENOMINATORS OF THE KONTSEVICH INTEGRAL AND THE UNIVERSAL PERTURBATIVE INVARIANT OF 3-MANIFOLDS

作者: Thang T. Q. Le

DOI: 10.1007/S002220050298

关键词:

摘要: The integrality of the Kontsevich integral and perturbative invariants is discussed. It shown that denominator degree n part any knot or link a divisor (2!3!…n!)4(n+1)!. We prove this by establishing existence Drinfeld's associator in space chord diagrams with special denominators. also show universal invariant homology 3-spheres not divisible prime greater than 2n+1.

参考文章(17)
M. Kontsevich, Vassiliev’s knot invariants ADVSOV. pp. 137- 150 ,(1993) , 10.1090/ADVSOV/016.2/04
Jun Murakami, Tu Quoc Thang Le, The universal Vassiliev-Kontsevich invariant for framed oriented links Compositio Mathematica. ,vol. 102, pp. 41- 64 ,(1996)
Vladimir G. Turaev, Quantum invariants of knots and 3-manifolds arXiv: High Energy Physics - Theory. ,(1994) , 10.1515/9783110221848
M. Kontsevich, Rozansky-Witten invariants via formal geometry arXiv: Differential Geometry. ,(1997)
Murray Gerstenhaber, S.D. Schack, A hodge-type decomposition for commutative algebra cohomology Journal of Pure and Applied Algebra. ,vol. 48, pp. 229- 247 ,(1987) , 10.1016/0022-4049(87)90112-5
Thang T.Q. Le, Jun Murakami, Tomotada Ohtsuki, On a universal perturbative invariant of 3-manifolds Topology. ,vol. 37, pp. 539- 574 ,(1998) , 10.1016/S0040-9383(97)00035-9
Ruth Lawrence, Lev Rozansky, Witten–Reshetikhin–Turaev Invariants of¶Seifert Manifolds Communications in Mathematical Physics. ,vol. 205, pp. 287- 314 ,(1999) , 10.1007/S002200050678
Tu Quoc Thang Le, Jun Murakami, Representation of the category of tangles by Kontsevich's iterated integral Communications in Mathematical Physics. ,vol. 168, pp. 535- 562 ,(1995) , 10.1007/BF02101842