A Reduced-Basis Method for solving parameter-dependent convection-diffusion problems around rigid bodies

作者: K. Urban , T. Tonn

DOI:

关键词:

摘要: We consider a convection-diffusion problem in box which rigid bodies are present. The location and orientation of these subject to set parameters. In order use reduced basis method, we perform two-step method. the first step, transform parameter-dependent geometric situation reference (also mapping mesh). Then, Empirical Interpolation Method (EIM) separate parameter from variables pde. present several numerical results that indicate efficiency corresponding analysis will be presented forthcoming paper, [2].

参考文章(17)
Yvon Maday, Anthony T. Patera, Gabriel Turinici, A Priori Convergence Theory for Reduced-Basis Approximations of Single-Parameter Elliptic Partial Differential Equations Journal of Scientific Computing. ,vol. 17, pp. 437- 446 ,(2002) , 10.1023/A:1015145924517
J.L. Lumley, Coherent Structures in Turbulence Transition and Turbulence#R##N#Proceedings of a Symposium Conducted by the Mathematics Research Center, the University of Wisconsin–Madison, October 13–15, 1980. pp. 215- 242 ,(1981) , 10.1016/B978-0-12-493240-1.50017-X
J. P. Fink, W. C. Rheinboldt, On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations Zamm-zeitschrift Fur Angewandte Mathematik Und Mechanik. ,vol. 63, pp. 21- 28 ,(1983) , 10.1002/ZAMM.19830630105
K. Kunisch, S. Volkwein, Galerkin proper orthogonal decomposition methods for parabolic problems Numerische Mathematik. ,vol. 90, pp. 117- 148 ,(2001) , 10.1007/S002110100282
John L Lumley, Andrew Poje, None, Low-dimensional models for flows with density fluctuations Physics of Fluids. ,vol. 9, pp. 2023- 2031 ,(1997) , 10.1063/1.869321
K. Kunisch, S. Volkwein, Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics SIAM Journal on Numerical Analysis. ,vol. 40, pp. 492- 515 ,(2002) , 10.1137/S0036142900382612
T. A. Porsching, Estimation of the error in the reduced basis method solution of nonlinear equations Mathematics of Computation. ,vol. 45, pp. 487- 496 ,(1985) , 10.1090/S0025-5718-1985-0804937-0
Werner C. Rheinboldt, On the theory and error estimation of the reduced basis method for multi-parameter problems Nonlinear Analysis-theory Methods & Applications. ,vol. 21, pp. 849- 858 ,(1993) , 10.1016/0362-546X(93)90050-3
K. Ito, S.S. Ravindran, A Reduced-Order Method for Simulation and Control of Fluid Flows Journal of Computational Physics. ,vol. 143, pp. 403- 425 ,(1998) , 10.1006/JCPH.1998.5943