Reduced Basis Method for quadratically nonlinear transport equations

作者: N. Jung , B. Haasdonk , D. Kroner

DOI: 10.1504/IJCSM.2009.030912

关键词:

摘要: If many numerical solutions of parametrised partial differential equations have to be computed for varying parameters, usual Finite Element Methods (FEM) suffer from too high computational costs. The RBM allows solve problems faster than by a direct FEM. In the current presentation we extend stationary viscous Burgers equation time-dependent case and general quadratically nonlinear transport equations. A posteriori error estimators justify approach. Numerical experiments on parameter-dependent problem, demonstrate applicability model reduction technique. Comparison CPU times FEM demonstrates efficiency.

参考文章(15)
K. Urban, T. Tonn, A Reduced-Basis Method for solving parameter-dependent convection-diffusion problems around rigid bodies ECCOMAS CFD 2006: Proceedings of the European Conference on Computational Fluid Dynamics, Egmond aan Zee, The Netherlands, September 5-8, 2006. ,(2006)
Mario Ohlberger, Bernard Haasdonk, Gianluigi Rozza, A Reduced Basis Method for Evolution Schemes with Parameter-Dependent Explicit Operators ETNA, Electronic Transactions on Numerical Analysis. ,vol. 32, pp. 145- 168 ,(2008)
Nguyen Ngoc Cuong, Karen Veroy, Anthony T. Patera, Certified Real-Time Solution of Parametrized Partial Differential Equations Handbook of Materials Modeling. pp. 1529- 1564 ,(2005) , 10.1007/978-1-4020-3286-8_76
Alfio Quarteroni, Alberto Valli, Numerical Approximation of Partial Differential Equations Springer Series in Computational Mathematics. ,vol. 23, pp. 1- 544 ,(1994) , 10.1007/978-3-540-85268-1
Ngoc-Cuong Nguyen, Gianluigi Rozza, Anthony T. Patera, Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation Calcolo. ,vol. 46, pp. 157- 185 ,(2009) , 10.1007/S10092-009-0005-X
K. Veroy, A. T. Patera, Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds International Journal for Numerical Methods in Fluids. ,vol. 47, pp. 773- 788 ,(2005) , 10.1002/FLD.867
Maxime Barrault, Yvon Maday, Ngoc Cuong Nguyen, Anthony T. Patera, An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations Comptes Rendus Mathematique. ,vol. 339, pp. 667- 672 ,(2004) , 10.1016/J.CRMA.2004.08.006