Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis.

作者: K. Nomura , C. Mecey , Y.-N. Lee , L. A. Imboden , J. H. Chang

DOI: 10.1073/PNAS.1103338108

关键词:

摘要: Innate immunity in plants can be triggered by microbe- and pathogen-associated molecular patterns. The pattern-triggered (PTI) is often suppressed pathogen effectors delivered into the host cell. Plants overcome suppression of PTI reestablish resistance through effector-triggered (ETI). An unanswered question how might pathogen-suppression during ETI. Findings described this paper suggest a possible mechanism. During Pseudomonas syringae pathovar tomato (Pst) DC3000 infection Arabidopsis, ADP ribosylation factor guanine nucleotide exchange factor, AtMIN7, destabilized effector HopM1 26S proteasome. In study, we discovered that AtMIN7 required for not only PTI, consistent with notion Pst degrades to suppress but also level healthy low, increases posttranscriptionally response activation PTI. Whereas led degradation ETI three different effectors, AvrRpt2, AvrPphB, HopA1, Col-0 blocks ability destabilize AtMIN7. Further analyses bacterial translocation stability transgenic show prevents HopM1-mediated inside plant Both are localized trans-Golgi network/early endosome, subcellular compartment previously known associated pathogenesis plants. Thus, blocking endosome-associated critical part mechanism counter

参考文章(35)
Georg Felix, Juliana D. Duran, Sigrid Volko, Thomas Boller, Plants have a sensitive perception system for the most conserved domain of bacterial flagellin Plant Journal. ,vol. 18, pp. 265- 276 ,(1999) , 10.1046/J.1365-313X.1999.00265.X
S. Fischer-Parton, R. M. Parton, P. C. Hickey, J. Dijksterhuis, H. A. Atkinson, N. D. Read, Confocal microscopy of FM4‐64 as a tool for analysing endocytosis and vesicle trafficking in living fungal hyphae Journal of Microscopy. ,vol. 198, pp. 246- 259 ,(2000) , 10.1046/J.1365-2818.2000.00708.X
Kinya Nomura, Sruti DebRoy, Yong Hoon Lee, Nathan Pumplin, Jonathan Jones, Sheng Yang He, A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science. ,vol. 313, pp. 220- 223 ,(2006) , 10.1126/SCIENCE.1129523
Anna Block, James R Alfano, Plant targets for Pseudomonas syringae type III effectors: Virulence targets or guarded decoys? Current Opinion in Microbiology. ,vol. 14, pp. 39- 46 ,(2011) , 10.1016/J.MIB.2010.12.011
Jong Hyun Ham, Doris R. Majerczak, Kinya Nomura, Christy Mecey, Francisco Uribe, Sheng-Yang He, David Mackey, David L. Coplin, Multiple activities of the plant pathogen type III effector proteins WtsE and AvrE require WxxxE motifs. Molecular Plant-microbe Interactions. ,vol. 22, pp. 703- 712 ,(2009) , 10.1094/MPMI-22-6-0703
A. J. Bogdanove, J. F. Kim, Z. Wei, P. Kolchinsky, A. O. Charkowski, A. K. Conlin, A. Collmer, S. V. Beer, Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato Proceedings of the National Academy of Sciences of the United States of America. ,vol. 95, pp. 1325- 1330 ,(1998) , 10.1073/PNAS.95.3.1325
L. Navarro, P. Dunoyer, F. Jay, B. Arnold, N. Dharmasiri, M. Estelle, O. Voinnet, J. D. G. Jones, A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling Science. ,vol. 312, pp. 436- 439 ,(2006) , 10.1126/SCIENCE.1126088
Ming Guo, Fang Tian, Yashitola Wamboldt, James R. Alfano, The Majority of the Type III Effector Inventory of Pseudomonas syringae pv. tomato DC3000 Can Suppress Plant Immunity Molecular Plant-microbe Interactions. ,vol. 22, pp. 1069- 1080 ,(2009) , 10.1094/MPMI-22-9-1069
Hye-Sook Oh, Duck Hwan Park, Alan Collmer, Components of the Pseudomonas syringae type III secretion system can suppress and may elicit plant innate immunity. Molecular Plant-microbe Interactions. ,vol. 23, pp. 727- 739 ,(2010) , 10.1094/MPMI-23-6-0727
Stephen T. Chisholm, Gitta Coaker, Brad Day, Brian J. Staskawicz, Host-microbe interactions: Shaping the evolution of the plant immune response Cell. ,vol. 124, pp. 803- 814 ,(2006) , 10.1016/J.CELL.2006.02.008