First results from a simplified Elkem Solar route—Input to tolerance limits

作者: Anne-Karin Søiland , Marit G. Dolmen , Johan Heide , Ulrik Thisted , Gunnar Halvorsen

DOI: 10.1016/J.SOLMAT.2014.04.012

关键词:

摘要: Abstract Elkem Solar has worked with a simplification of their metallurgical refining route for Grade silicon.This involves removing the two last process steps, directional solidification and post treatment, whilst acid leaching is adapted to yield product that can go directly multicrystalline ingot. Results from initial testing new are presented. Multicrystalline ingots based on 50% mix virgin polysilicon have been made in GT furnace compared an ingot 100% same furnace. cell results three chosen brick positions (corner, edge center) presented center position reference. Both (waferable amount brick) efficiencies comparable reference bricks attaining maximum 17.3%. Additional parameters like shunt resistance, Reverse Breakdown Voltage (RBV) Light Induced Degradation (LID) well within acceptable level standard module set-up. In parallel product, lab-scale investigations tolerance limit feedstock elements aluminum calcium conducted, Al

参考文章(15)
J. Broisch, W. Kwapil, S. Rein, A.-K. Soiland, S. Grandum, I. Reis, G. Emanuel, R. Tronstad, Cz-Silicon Wafers and Solar Cells from Compensated Solar-Grade Silicon Feedstock: Potential and Challenges world conference on photovoltaic energy conversion. pp. 1186- 1194 ,(2010) , 10.4229/25THEUPVSEC2010-2BO.1.2
A. Schei, A metallurgical route to solar-grade silicon fpsa. pp. 279- 295 ,(1986)
J. Broisch, F. Fertig, H. Höffler, I. Geisemeyer, K. Krauß, S. Rein, J.O. Odden, A.-K. Soiland, Fully Solderable Large-Area Screen-Printed Al-BSF p-Type Mc-Si Solar Cells from 100 % Solar Grade Feedstock Yielding n > 17 %: Challenges and Potential on Cell and Module Level world conference on photovoltaic energy conversion. pp. 1031- 1038 ,(2012) , 10.4229/27THEUPVSEC2012-2AV.4.42
J.R. Davis, A. Rohatgi, R.H. Hopkins, P.D. Blais, P. Rai-Choudhury, J.R. McCormick, H.C. Mollenkopf, Impurities in silicon solar cells IEEE Transactions on Electron Devices. ,vol. 27, pp. 677- 687 ,(1980) , 10.1109/T-ED.1980.19922
T. Bartel, K. Lauer, M. Heuer, M. Kaes, M. Walerysiak, F. Gibaja, J. Lich, J. Bauer, F. Kirscht, The Effect of Al and Fe Doping on Solar Cells Made from Compensated Silicon Energy Procedia. ,vol. 27, pp. 45- 52 ,(2012) , 10.1016/J.EGYPRO.2012.07.027
Sergio Pizzini, Towards solar grade silicon: Challenges and benefits for low cost photovoltaics Solar Energy Materials and Solar Cells. ,vol. 94, pp. 1528- 1533 ,(2010) , 10.1016/J.SOLMAT.2010.01.016
J.O. Odden, T.C. Lommasson, M. Tayyib, J. Vedde, T. Buseth, K. Friestad, H. Date, R. Tronstad, Results on performance and ageing of solar modules based on Elkem Solar Silicon (ESS™) from installations at various locations Solar Energy Materials and Solar Cells. ,vol. 130, pp. 673- 678 ,(2014) , 10.1016/J.SOLMAT.2014.04.002
F. A. Trumbore, Solid Solubilities of Impurity Elements in Germanium and Silicon* Bell System Technical Journal. ,vol. 39, pp. 205- 233 ,(1960) , 10.1002/J.1538-7305.1960.TB03928.X
J W Chen, A G Milnes, Energy Levels in Silicon Annual Review of Materials Science. ,vol. 10, pp. 157- 228 ,(1980) , 10.1146/ANNUREV.MS.10.080180.001105
R. Gløckner, M. de Wild-Scholten, Energy Payback Time and Carbon Footprint of Elkem Solar Silicon world conference on photovoltaic energy conversion. pp. 4661- 4666 ,(2012) , 10.4229/27THEUPVSEC2012-6CV.4.12