Crossover exponents in percolating superconductor–nonlinear-conductor mixtures

作者: G. M. Zhang

DOI: 10.1103/PHYSREVB.53.20

关键词:

摘要: The nonlinear response is studied in a two-component composite with concentration p of superconductor (S) and 1-p normal conductor (N) the form J=${\mathrm{\ensuremath{\sigma}}}_{1}$E+${\mathrm{\ensuremath{\chi}}}_{1}$${\mathit{E}}^{\mathrm{\ensuremath{\beta}}}$ (\ensuremath{\beta}\ensuremath{\gtrsim}1). Below percolation threshold ${\mathit{p}}_{\mathit{c}}$ superconductor, can be represented by 〈J〉=${\mathrm{\ensuremath{\sigma}}}_{\mathit{eE}}$+${\mathrm{\ensuremath{\chi}}}_{\mathit{eE}}^{\mathrm{\ensuremath{\beta}}}$, where 〈...〉 represents spatial averages. magnitude crossover field ${\mathit{E}}_{\mathit{c}}$, defined as electric at which linear become comparable, found to have power-law dependence ${\mathit{E}}_{\mathit{c}}$\ensuremath{\sim}(${\mathit{p}}_{\mathit{c}}$-p${)}^{\mathit{M}(\mathrm{\ensuremath{\beta}})}$, corresponding current ${\mathit{I}}_{\mathit{c}}$ similar ${\mathit{E}}_{\mathit{c}}$\ensuremath{\sim}(${\mathit{p}}_{\mathit{c}}$-p${)}^{\mathit{W}(\mathrm{\ensuremath{\beta}})}$ approached from below. By using connection between random problem conductance fluctuation explicit expressions for M(\ensuremath{\beta}) W(\ensuremath{\beta}) are calculated. We prove that both monotonically decreasing functions \ensuremath{\beta}, special values M(${1}^{+}$)=W(${1}^{+}$)=+\ensuremath{\infty}, M(3)=[\ensuremath{\kappa}\ensuremath{'}(2)+s/2], W(3)=[\ensuremath{\kappa}\ensuremath{'}(2)-s/2], M(+\ensuremath{\infty})=(2-d)\ensuremath{\nu}/2\ensuremath{\le}0, W(+\ensuremath{\infty})=-(s+${\mathrm{\ensuremath{\zeta}}}_{\mathit{G}}$)/20. ${\mathit{E}}_{\mathit{c}}$ discussed \ensuremath{\beta} some interesting effects reported this paper. \textcopyright{} 1996 American Physical Society.

参考文章(27)
J.P. Clerc, G. Giraud, J.M. Laugier, J.M. Luck, The electrical conductivity of binary disordered systems, percolation clusters, fractals and related models Advances in Physics. ,vol. 39, pp. 191- 309 ,(1990) , 10.1080/00018739000101501
Scott Kirkpatrick, Percolation and Conduction Reviews of Modern Physics. ,vol. 45, pp. 574- 588 ,(1973) , 10.1103/REVMODPHYS.45.574
Stephen W. Kenkel, Joseph P. Straley, Percolation Theory of Nonlinear Circuit Elements Physical Review Letters. ,vol. 49, pp. 767- 770 ,(1982) , 10.1103/PHYSREVLETT.49.767
O Levy, D J Bergman, The bulk effective response of non-linear random resistor networks: numerical study and analytic approximations Journal of Physics: Condensed Matter. ,vol. 5, pp. 7095- 7107 ,(1993) , 10.1088/0953-8984/5/38/006
C. S. Yang, P. M. Hui, Effective nonlinear response in random nonlinear resistor networks: Numerical studies. Physical Review B. ,vol. 44, pp. 12559- 12561 ,(1991) , 10.1103/PHYSREVB.44.12559
D. Stroud, P. M. Hui, Nonlinear susceptibilities of granular matter Physical Review B. ,vol. 37, pp. 8719- 8724 ,(1988) , 10.1103/PHYSREVB.37.8719
XC Zeng, DJ Bergman, PM Hui, D Stroud, None, Effective-medium theory for weakly nonlinear composites. Physical Review B. ,vol. 38, pp. 10970- 10973 ,(1988) , 10.1103/PHYSREVB.38.10970
XC Zeng, PM Hui, DJ Bergman, D Stroud, None, Mean field theory for weakly nonlinear composites Physica A-statistical Mechanics and Its Applications. ,vol. 157, pp. 192- 197 ,(1989) , 10.1016/0378-4371(89)90300-2
P. M. Hui, Effective nonlinear response in dilute nonlinear granular materials Journal of Applied Physics. ,vol. 68, pp. 3009- 3010 ,(1990) , 10.1063/1.346439
P. M. Hui, Higher order nonlinear response in dilute random composites Journal of Applied Physics. ,vol. 73, pp. 4072- 4073 ,(1993) , 10.1063/1.354071