Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei.

作者: M. P. Scheffer , M. Eltsov , A. S. Frangakis

DOI: 10.1073/PNAS.1108268108

关键词:

摘要: Chromatin folding in eukaryotes fits the genome into limited volume of cell nucleus. Formation higher-order chromatin structures attenuates DNA accessibility, thus contributing to control essential functions such as transcription, replication, and repair. The 30-nm fiber is thought be first hierarchical level folding, but nucleosome arrangement compact was previously unknown. We used cryoelectron tomography vitreous sections determine structure compact, native avian erythrocyte nuclei. predominant geometry revealed by subtomogram averaging a left-handed two-start helix with approximately 6.5 nucleosomes per 11 nm, which are juxtaposed face-to-face shifted off their superhelical axes an axial translation 3.4 nm azimuthal rotation 54°. produce checkerboard pattern when observed direction perpendicular axis not interdigitated. packing within fibers shows larger center-to-center internucleosomal distances than anticipated, excluding possibility core-to-core interactions, explaining how transcription regulation factors can access nucleosomes.

参考文章(35)
Thomas Schalch, Sylwia Duda, David F. Sargent, Timothy J. Richmond, X-ray structure of a tetranucleosome and its implications for the chromatin fibre Nature. ,vol. 436, pp. 138- 141 ,(2005) , 10.1038/NATURE03686
Friedrich Förster, Sabine Pruggnaller, Anja Seybert, Achilleas S. Frangakis, Classification of cryo-electron sub-tomograms using constrained correlation Journal of Structural Biology. ,vol. 161, pp. 276- 286 ,(2008) , 10.1016/J.JSB.2007.07.006
Timothy D. Frouws, Hugh-G. Patterton, Bryan T. Sewell, Histone octamer helical tubes suggest that an internucleosomal four-helix bundle stabilizes the chromatin fiber. Biophysical Journal. ,vol. 96, pp. 3363- 3371 ,(2009) , 10.1016/J.BPJ.2008.10.075
Sabine Pruggnaller, Matthias Mayr, Achilleas S. Frangakis, A visualization and segmentation toolbox for electron microscopy. Journal of Structural Biology. ,vol. 164, pp. 161- 165 ,(2008) , 10.1016/J.JSB.2008.05.003
K Andersson, B Björkroth, B Daneholt, Packing of a specific gene into higher order structures following repression of RNA synthesis. Journal of Cell Biology. ,vol. 98, pp. 1296- 1303 ,(1984) , 10.1083/JCB.98.4.1296
Zhou Yu, Achilleas S. Frangakis, Classification of electron sub-tomograms with neural networks and its application to template-matching. Journal of Structural Biology. ,vol. 174, pp. 494- 504 ,(2011) , 10.1016/J.JSB.2011.02.009
M. Eltsov, K. M. MacLellan, K. Maeshima, A. S. Frangakis, J. Dubochet, Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 19732- 19737 ,(2008) , 10.1073/PNAS.0810057105
David J. Tremethick, Higher-Order Structures of Chromatin: The Elusive 30 nm Fiber Cell. ,vol. 128, pp. 651- 654 ,(2007) , 10.1016/J.CELL.2007.02.008
Pernette J Verschure, Ineke van der Kraan, Erik M M Manders, Deborah Hoogstraten, Adriaan B Houtsmuller, Roel van Driel, Condensed chromatin domains in the mammalian nucleus are accessible to large macromolecules EMBO Reports. ,vol. 4, pp. 861- 866 ,(2003) , 10.1038/SJ.EMBOR.EMBOR922
J Bednar, R A Horowitz, J Dubochet, C L Woodcock, Chromatin Conformation and Salt-induced Compaction: Three-dimensional Structural Information from Cryoelectron Microscopy Journal of Cell Biology. ,vol. 131, pp. 1365- 1376 ,(1995) , 10.1083/JCB.131.6.1365