Mean Field and Gaussian Approximation for Partial Differential Equations with Random Coefficients

作者: R. Figari , E. Orlandi , G. Papanicolaou

DOI: 10.1137/0142074

关键词:

摘要: After discussing in several contexts how mean field and fluctuation approximations arise can be used, we give a simple method by which the analysis of carried out.

参考文章(7)
G. C. Papanicolaou, S. R. S. Varadhan, Diffusion in regions with many small holes Springer, Berlin, Heidelberg. pp. 190- 206 ,(1980) , 10.1007/BFB0004010
Ray Redheffer, Jack K. Hale, Ordinary differential equations American Mathematical Monthly. ,vol. 78, pp. 1154- ,(1971) , 10.2307/2316346
U. Mark Kac, Probabilistic methods in some problems of scattering theory Rocky Mountain Journal of Mathematics. ,vol. 4, pp. 511- 538 ,(1974) , 10.1216/RMJ-1974-4-3-511
B. S. White, J. N. Franklin, A limit theorem for stochastic two-point boundary-value problems of ordinary differential equations Communications on Pure and Applied Mathematics. ,vol. 32, pp. 253- 275 ,(1979) , 10.1002/CPA.3160320203
Jeffrey Rauch, Michael Taylor, Potential and scattering theory on wildly perturbed domains Journal of Functional Analysis. ,vol. 18, pp. 27- 59 ,(1975) , 10.1016/0022-1236(75)90028-2
Alain Bensoussan, Jacques-Louis Lions, George Papanicolaou, T. K. Caughey, Asymptotic Analysis of Periodic Structures Journal of Applied Mechanics. ,vol. 46, pp. 477- 477 ,(1979) , 10.1115/1.3424588
G. C. Papanicolaou, Stochastically perturbed bifurcation stcm. ,(1980)