Shape offsets via level sets

作者: R. Kimmel , A.M. Bruckstein

DOI: 10.1016/0010-4485(93)90040-U

关键词:

摘要: Abstract An algorithm for shape offsetting is presented that based on level-set propagation. This avoids the topological problems encountered in traditional algorithms, and it deals with curvature singularities by including an ‘entropy condition’ its numerical implementation.

参考文章(24)
Benjamin B. Kimia, Toward a computational theory of shape McGill University. ,(1992)
James A. Sethian, Numerical Methods for Propagating Fronts Springer, New York, NY. pp. 155- 164 ,(1987) , 10.1007/978-1-4612-4656-5_18
Gary A. Sod, Numerical methods in fluid dynamics Cambridge University Press. ,(1985)
David F Griffiths, Andrew Ronald Mitchell, The Finite Difference Method in Partial Differential Equations ,(1980)
B. Pham, Offset approximation of uniform B-splines Computer-aided Design. ,vol. 20, pp. 471- 474 ,(1988) , 10.1016/0010-4485(88)90005-X
G. Farin, Curvature continuity and offsets for piecewise conics ACM Transactions on Graphics. ,vol. 8, pp. 89- 99 ,(1989) , 10.1145/62054.62056
D.S. Meek, D.J. Walton, Offset curves of clothoidal splines Computer-aided Design. ,vol. 22, pp. 199- 201 ,(1990) , 10.1016/0010-4485(90)90048-H
L. Calabi, W. E. Hartnett, Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons American Mathematical Monthly. ,vol. 75, pp. 335- 342 ,(1968) , 10.1080/00029890.1968.11970990
Stanley Osher, James A Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations Journal of Computational Physics. ,vol. 79, pp. 12- 49 ,(1988) , 10.1016/0021-9991(88)90002-2