Biosynthesis of Vitamins and Cofactors in Bacterium-Harbouring Trypanosomatids Depends on the Symbiotic Association as Revealed by Genomic Analyses

作者: Cecilia C. Klein , João M. P. Alves , Myrna G. Serrano , Gregory A. Buck , Ana Tereza R. Vasconcelos

DOI: 10.1371/JOURNAL.PONE.0079786

关键词:

摘要: Some non-pathogenic trypanosomatids maintain a mutualistic relationship with betaproteobacterium of the Alcaligenaceae family. Intensive nutritional exchanges have been reported between two partners, indicating that these protozoa are excellent biological models to study metabolic co-evolution. We previously sequenced and herein investigate entire genomes five which harbor symbiotic bacterium (SHTs for Symbiont-Haboring Trypanosomatids) respective bacteria (TPEs Trypanosomatid Proteobacterial Endosymbiont), as well without symbionts (RTs Regular Trypanosomatids), presence genes classical pathways vitamin biosynthesis. Our data show biosynthetic thiamine, biotin, nicotinic acid absent from all trypanosomatid genomes. This is in agreement absolute growth requirement vitamins Also RTs synthesis pantothenic acid, folic riboflavin, B6. also available showing auxotrophic essential vitamins. On other hand, SHTs autotrophic such Indeed, corresponding were identified, most them symbiont genomes, while few genes, mostly eukaryotic origin, found host The only exceptions latter are: gene coding enzyme ketopantoate reductase (EC:1.1.1.169) related instead Firmicutes bacteria; one involved salvage pathway ubiquinone, Gammaproteobacteria. Their may result lateral transfer. Taken together, our results reinforce idea low associated bacterium, contains production.

参考文章(63)
Tadhg P. Begley, Cynthia Kinsland, Sean Taylor, Manish Tandon, Robb Nicewonger, Min Wu, Hsiu-Ju Chiu, Neil Kelleher, Nino Campobasso, Yi Zhang, Cofactor Biosynthesis: A Mechanistic Perspective Springer, Berlin, Heidelberg. pp. 93- 142 ,(1998) , 10.1007/3-540-69542-7_3
John O. Corliss, W. H. R. Lumsden, D. A. Evans, Biology of the Kinetoplastida Transactions of the American Microscopical Society. ,vol. 97, pp. 281- ,(1978) , 10.2307/3225633
Adelbert Bacher, Sabine Eberhardt, Wolfgang Eisenreich, Markus Fischer, Stefan Herz, Boris Illarionov, Klaus Kis, Gerald Richter, Biosynthesis of riboflavin. Vitamins and Hormones Series. ,vol. 61, pp. 1- 49 ,(2001) , 10.1016/S0083-6729(01)61001-X
Maureen J. Donlin, Using the Generic Genome Browser (GBrowse) Current protocols in human genetics. ,vol. 28, ,(2007) , 10.1002/0471250953.BI0909S28
Oleg Kurnasov, Vasiliy Goral, Keri Colabroy, Svetlana Gerdes, Shubha Anantha, Andrei Osterman, Tadhg P Begley, NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria. Chemistry & Biology. ,vol. 10, pp. 1195- 1204 ,(2003) , 10.1016/J.CHEMBIOL.2003.11.011
Tadhg P Begley, Cynthia Kinsland, Ryan A Mehl, Andrei Osterman, Pieter Dorrestein, The biosynthesis of nicotinamide adenine dinucleotides in bacteria Vitamins and Hormones Series. ,vol. 61, pp. 103- 119 ,(2001) , 10.1016/S0083-6729(01)61003-3
Michael P. Cummings, PHYLIP (Phylogeny Inference Package) Dictionary of Bioinformatics and Computational Biology. ,(2004) , 10.1002/0471650129.DOB0534
Tadhg P Begley, Cynthia Kinsland, Erick Strauss, The biosynthesis of coenzyme A in bacteria. Vitamins and Hormones Series. ,vol. 61, pp. 157- 171 ,(2001) , 10.1016/S0083-6729(01)61005-7
Yong Yang, Genshi Zhao, Tsz-Kwong Man, Malcolm E. Winkler, Involvement of the gapA- and epd(gapB)-Encoded Dehydrogenases in Pyridoxal 5′-Phosphate Coenzyme Biosynthesis in Escherichia coli K-12 Journal of Bacteriology. ,vol. 180, pp. 4294- 4299 ,(1998) , 10.1128/JB.180.16.4294-4299.1998
JAMES W. GILL, HENRY J. VOGEL, A Bacterial Endosymbiote in Crithidia (Strigomonas) oncopelti: Biochemical and Morphological Aspects* Journal of Eukaryotic Microbiology. ,vol. 10, pp. 148- 152 ,(1963) , 10.1111/J.1550-7408.1963.TB01653.X