Personalization of Logical Models With Multi-Omics Data Allows Clinical Stratification of Patients.

作者: Jonas Béal , Arnau Montagud , Pauline Traynard , Emmanuel Barillot , Laurence Calzone

DOI: 10.3389/FPHYS.2018.01965

关键词:

摘要: Logical models of cancer pathways are typically built by mining the literature for relevant experimental observations. Most time they generic as apply large cohorts individuals. As a consequence, generally do not capture heterogeneity patient tumors and their therapeutic responses. We present here novel framework, referred to PROFILE, tailor logical particular biological sample such patient’s tumor. This methodology permits compare model simulations individual clinical data, i.e., survival time. Our approach focuses on integrating mutation copy number alterations (CNA), transcriptomics or proteomics models. These data need first be either binarized set between 0 1, can then incorporated in modifying activity node, initial conditions state transition rates. The use MaBoSS, tool based Monte-Carlo kinetic algorithm perform stochastic results probabilities, allows semi-quantitative study model’s phenotypes perturbations. proof concept, we published signaling molecular from METABRIC breast patients. test several combinations incorporation discuss that, with most comprehensive patient-specific obtained nodes mutations CNA altering rates RNA expression. conclude that these models’ show good correlation patients’ Nottingham prognostic index (NPI) subgrouping observe two highly derived personalized models, Proliferation Apoptosis, biologically consistent factors: patients both high proliferation low have worst rate, conversely. aims combine mechanistic insights modeling multi-omics integration provide patient-relevant work leads precision medicine will eventually facilitate choice drug treatments physicians

参考文章(49)
Claudine Chaouiya, Aurélien Naldi, Denis Thieffry, Logical modelling of gene regulatory networks with GINsim. Methods of Molecular Biology. ,vol. 804, pp. 463- 479 ,(2012) , 10.1007/978-1-61779-361-5_23
Jing Wang, Sijin Wen, W. Fraser Symmans, Lajos Pusztai, Kevin R. Coombes, The bimodality index: a criterion for discovering and ranking bimodal signatures from cancer gene expression profiling data. Cancer Informatics. ,vol. 7, pp. 199- 216 ,(2009) , 10.4137/CIN.S2846
Giovanni Ciriello, Michael L Gatza, Andrew H Beck, Matthew D Wilkerson, Suhn K Rhie, Alessandro Pastore, Hailei Zhang, Michael McLellan, Christina Yau, Cyriac Kandoth, Reanne Bowlby, Hui Shen, Sikander Hayat, Robert Fieldhouse, Susan C Lester, MK Gary, Rachel E Factor, Laura C Collins, Kimberly H Allison, Yunn-Yi Chen, Kristin Jensen, Nicole B Johnson, Steffi Oesterreich, Gordon B Mills, Andrew D Cherniack, Gordon Robertson, Christopher Benz, Chris Sander, Peter W Laird, Katherine A Hoadley, Tari A King, Rehan Akbani, J Todd Auman, Miruna Balasundaram, Saianand Balu, Thomas Barr, Andrew Beck, Stephen Benz, Mario Berrios, Rameen Beroukhim, Tom Bodenheimer, Lori Boice, Moiz S Bootwalla, Jay Bowen, Denise Brooks, Lynda Chin, Juok Cho, Sudha Chudamani, Tanja Davidsen, John A Demchok, Jennifer B Dennison, Li Ding, Ina Felau, Martin L Ferguson, Scott Frazer, Stacey B Gabriel, JianJiong Gao, Julie M Gastier-Foster, Nils Gehlenborg, Mark Gerken, Gad Getz, William J Gibson, D Neil Hayes, David I Heiman, Andrea Holbrook, Robert A Holt, Alan P Hoyle, Hai Hu, Mei Huang, Carolyn M Hutter, E Shelley Hwang, Stuart R Jefferys, Steven JM Jones, Zhenlin Ju, Jaegil Kim, Phillip H Lai, Michael S Lawrence, Kristen M Leraas, Tara M Lichtenberg, Pei Lin, Shiyun Ling, Jia Liu, Wenbin Liu, Laxmi Lolla, Yiling Lu, Yussanne Ma, Dennis T Maglinte, Elaine Mardis, Jeffrey Marks, Marco A Marra, Cynthia McAllister, Shaowu Meng, Matthew Meyerson, Richard A Moore, Lisle E Mose, Andrew J Mungall, Bradley A Murray, Rashi Naresh, Michael S Noble, Olufunmilayo Olopade, Joel S Parker, Charles M Perou, Todd Pihl, Gordon Saksena, Steven E Schumacher, Kenna R Mills Shaw, Nilsa C Ramirez, W Kimryn Rathmell, Jeffrey Roach, A Gordon Robertson, Jacqueline E Schein, Nikolaus Schultz, Margi Sheth, Yan Shi, Juliann Shih, Carl Simon Shelley, Craig Shriver, Janae V Simons, Heidi J Sofia, Matthew G Soloway, Carrie Sougnez, Charlie Sun, Roy Tarnuzzer, Daniel G Tiezzi, David J Van Den Berg, Doug Voet, Yunhu Wan, Zhining Wang, John N Weinstein, Daniel J Weisenberger, Richard Wilson, Lisa Wise, Maciej Wiznerowicz, Junyuan Wu, Ye Wu, Liming Yang, Travis I Zack, Jean C Zenklusen, Jiashan Zhang, Erik Zmuda, None, Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. ,vol. 163, pp. 506- 519 ,(2015) , 10.1016/J.CELL.2015.09.033
David P. A. Cohen, Loredana Martignetti, Sylvie Robine, Emmanuel Barillot, Andrei Zinovyev, Laurence Calzone, Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Migration PLOS Computational Biology. ,vol. 11, pp. e1004571- ,(2015) , 10.1371/JOURNAL.PCBI.1004571
Matan Hofree, John P Shen, Hannah Carter, Andrew Gross, Trey Ideker, Network based stratification of tumor mutations Nature Methods. ,vol. 10, pp. 1108- 1115 ,(2015) , 10.1038/NMETH.2651
Assieh Saadatpour, Réka Albert, Boolean modeling of biological regulatory networks: A methodology tutorial Methods. ,vol. 62, pp. 3- 12 ,(2013) , 10.1016/J.YMETH.2012.10.012
E. L. Kaplan, Paul Meier, Nonparametric Estimation from Incomplete Observations Springer Series in Statistics. ,vol. 53, pp. 319- 337 ,(1992) , 10.1007/978-1-4612-4380-9_25
Prateek Kumar, Steven Henikoff, Pauline C Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols. ,vol. 4, pp. 1073- 1081 ,(2009) , 10.1038/NPROT.2009.86
T. Helikar, J. Konvalina, J. Heidel, J. A. Rogers, Emergent decision-making in biological signal transduction networks Proceedings of the National Academy of Sciences of the United States of America. ,vol. 105, pp. 1913- 1918 ,(2008) , 10.1073/PNAS.0705088105