Exact calculation of stationary solution and parameter sensitivity analysis of stochastic continuous time Boolean models

作者: Mihály Koltai , Vincent Noel , Andrei Zinovyev , Laurence Calzone , Emmanuel Barillot

DOI: 10.1101/794230

关键词:

摘要: Abstract Motivation Solutions to stochastic Boolean models are usually estimated by Monte Carlo simulations, but as the state space of these can be enormous, there is an inherent uncertainty about accuracy estimates and whether simulations have reached all asymptotic solutions. Moreover, timescale parameters (transition rates) that probability values stationary solutions depend on in complex ways not been analyzed yet literature. These two fundamental uncertainties call for exact calculation method this class models. Results We show attractors (asynchronous) continuous time exactly calculated. The does require instead it uses matrix previously applied context chemical kinetics. Using approach, we also analyze under-explored question effect transition rates latter sensitive parameter changes. analysis distinguishes processes robust or, alternatively, values, providing both methodological biological insights. Contact mihaly.koltai@curie.fr or emmanuel.barillot@curie.fr Supplementary information data available at bioRxiv online. Availability implementation described article ExaStoLog MATLAB package GitHub https://github.com/sysbio-curie/exact-stoch-log-mod

参考文章(34)
Maksat Ashyraliyev, Yves Fomekong-Nanfack, Jaap A. Kaandorp, Joke G. Blom, Systems biology: parameter estimation for biochemical models FEBS Journal. ,vol. 276, pp. 886- 902 ,(2009) , 10.1111/J.1742-4658.2008.06844.X
Uri Alon, An Introduction to Systems Biology Chapman and Hall/CRC. ,(2006) , 10.1201/9781420011432
David P. A. Cohen, Loredana Martignetti, Sylvie Robine, Emmanuel Barillot, Andrei Zinovyev, Laurence Calzone, Mathematical Modelling of Molecular Pathways Enabling Tumour Cell Invasion and Migration PLOS Computational Biology. ,vol. 11, pp. e1004571- ,(2015) , 10.1371/JOURNAL.PCBI.1004571
Christopher V. Rao, Adam P. Arkin, Stochastic chemical kinetics and the quasi-steady-state assumption: Application to the Gillespie algorithm The Journal of Chemical Physics. ,vol. 118, pp. 4999- 5010 ,(2003) , 10.1063/1.1545446
Ovidiu Radulescu, Alexander N Gorban, Andrei Zinovyev, Alain Lilienbaum, Robust simplifications of multiscale biochemical networks BMC Systems Biology. ,vol. 2, pp. 86- 86 ,(2008) , 10.1186/1752-0509-2-86
Nicolas Le Novère, Quantitative and logic modelling of molecular and gene networks Nature Reviews Genetics. ,vol. 16, pp. 146- 158 ,(2015) , 10.1038/NRG3885
Z. Zi, Sensitivity analysis approaches applied to systems biology models Iet Systems Biology. ,vol. 5, pp. 336- 346 ,(2011) , 10.1049/IET-SYB.2011.0015
Bree B. Aldridge, Julio Saez-Rodriguez, Jeremy L. Muhlich, Peter K. Sorger, Douglas A. Lauffenburger, Fuzzy Logic Analysis of Kinase Pathway Crosstalk in TNF/EGF/Insulin-Induced Signaling PLoS Computational Biology. ,vol. 5, pp. e1000340- ,(2009) , 10.1371/JOURNAL.PCBI.1000340
Özgür Sahin, Holger Fröhlich, Christian Löbke, Ulrike Korf, Sara Burmester, Meher Majety, Jens Mattern, Ingo Schupp, Claudine Chaouiya, Denis Thieffry, Annemarie Poustka, Stefan Wiemann, Tim Beissbarth, Dorit Arlt, Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance BMC Systems Biology. ,vol. 3, pp. 1- 20 ,(2009) , 10.1186/1752-0509-3-1
D. Bérenguier, C. Chaouiya, P. T. Monteiro, A. Naldi, E. Remy, D. Thieffry, L. Tichit, Dynamical modeling and analysis of large cellular regulatory networks. Chaos. ,vol. 23, pp. 025114- ,(2013) , 10.1063/1.4809783