Modeling the 2 + 1 Gardner Equation

作者: Alfred R. Osborne

DOI: 10.1016/S0074-6142(10)97033-2

关键词:

摘要: Publisher Summary This chapter discusses an integrable equation at order higher than the Kadomtsev–Petviashvili (KP) equation, which is referred to as extended KP (exKP) or 2 + 1 Gardner equation. The has two main advantages over equation: (1) it describes directional wave trains with much larger spreading angles and (2) more nonlinear waves because of cubic (Gardner) term. one richest equations known, characterizing its scattering transform solution periodic boundary conditions challenging. Lax pair Hirota bilinear form for given. procedure deriving in physical units behavior

参考文章(14)
R. H. J. Grimshaw, Solitary Waves in Fluids ,(2007)
Jon Nimmo, Claire Gilson, 良吾 広田, 敦 永井, The direct method in soliton theory ,(2004)
B.G. Konopelchenko, V.G. Dubrovsky, Some new integrable nonlinear evolution equations in 2 + 1 dimensions Physics Letters A. ,vol. 102, pp. 15- 17 ,(1984) , 10.1016/0375-9601(84)90442-0
P. R. Gordoa, P. G. Est�vez, Double singular manifold method for the mKdV equation Theoretical and Mathematical Physics. ,vol. 99, pp. 653- 657 ,(1994) , 10.1007/BF01017047
R Conte, M Musette, A Pickering, The two-singular manifold method: II. Classical Boussinesq system Journal of Physics A. ,vol. 28, pp. 179- 187 ,(1995) , 10.1088/0305-4470/28/1/020
B G Konopelchenko, Inverse spectral transform for the (2 + 1)-dimensional Gardner equation Inverse Problems. ,vol. 7, pp. 739- 753 ,(1991) , 10.1088/0266-5611/7/5/007
John Weiss, M. Tabor, George Carnevale, The Painlevé property for partial differential equations Journal of Mathematical Physics. ,vol. 24, pp. 522- 526 ,(1983) , 10.1063/1.525721
J. M. Cerveró, P. G. Estévez, Miura transformation between two non-linear equations in 2+1 dimensions Journal of Mathematical Physics. ,vol. 39, pp. 2800- 2807 ,(1998) , 10.1063/1.532421
P. G. Estévez, Darboux transformation and solutions for an equation in 2+1 dimensions Journal of Mathematical Physics. ,vol. 40, pp. 1406- 1419 ,(1999) , 10.1063/1.532811