The Painlevé property for partial differential equations

作者: John Weiss , M. Tabor , George Carnevale

DOI: 10.1063/1.525721

关键词:

摘要: … Painleve property for partial differential equations and show how … well-known partial differential equations (Burgers' equation, KdV … in dynamical systems (ordinary and partial differential …

参考文章(12)
D. V. Chudnovsky, Riemann Monodromy Problem, Isomonodromy Deformation Equations and Completely Integrable Systems Bifurcation Phenomena in Mathematical Physics and Related Topics. pp. 385- 447 ,(1980) , 10.1007/978-94-009-9004-3_20
Tassos Bountis, Harvey Segur, Franco Vivaldi, Integrable Hamiltonian systems and the Painlevé property Physical Review A. ,vol. 25, pp. 1257- 1264 ,(1982) , 10.1103/PHYSREVA.25.1257
M. J. Ablowitz, A. Ramani, H. Segur, A connection between nonlinear evolution equations and ordinary differential equations of P‐type. II Journal of Mathematical Physics. ,vol. 21, pp. 715- 721 ,(1980) , 10.1063/1.524491
Y. F. Chang, M. Tabor, J. Weiss, Analytic structure of the Henon–Heiles Hamiltonian in integrable and nonintegrable regimes Journal of Mathematical Physics. ,vol. 23, pp. 531- 538 ,(1982) , 10.1063/1.525389
G.B. Whitham, Linear and non linear waves John Wiley. ,(1974)