Global probability maximization for a Gaussian bilateral inequality in polynomial time

作者: Michel Minoux , Riadh Zorgati

DOI: 10.1007/S10898-017-0501-5

关键词:

摘要: The present paper investigates Gaussian bilateral inequalities in view of solving related probability maximization problems. Since the function f representing satisfaction a given inequality is not concave everywhere, we first state and prove necessary sufficient condition for negative semi-definiteness Hessian. Then, (nonconvex) problem globally maximizing over polyhedron $$\mathbb {R}^{n}$$ adressed, shown to be polynomial-time solvable, thus yielding new-comer (short) list nonconvex global optimization problems which can solved exactly polynomial time. Application computing upper bounds maximum joint set m independent discussed computational results are reported.

参考文章(23)
René Henrion, Cyrille Strugarek, Convexity of Chance Constraints with Dependent Random Variables: The Use of Copulae Springer, New York, NY. pp. 427- 439 ,(2011) , 10.1007/978-1-4419-9586-5_17
Jean-Baptiste Hiriart-Urruty, Claude Lemaréchal, Convex analysis and minimization algorithms ,(1993)
Yurii Nesterov, Arkadii Nemirovskii, Interior-Point Polynomial Algorithms in Convex Programming ,(1987)
J.J. Moreau, Proximité et dualité dans un espace hilbertien Bulletin de la Société mathématique de France. ,vol. 79, pp. 273- 299 ,(1965) , 10.24033/BSMF.1625
Daniel Bienstock, Michael Chertkov, Sean Harnett, Chance-Constrained Optimal Power Flow: Risk-Aware Network Control under Uncertainty ∗ Siam Review. ,vol. 56, pp. 461- 495 ,(2014) , 10.1137/130910312
Ümit Sami Sakallı, Ömer Faruk Baykoç, Burak Birgören, Stochastic optimization for blending problem in brass casting industry Annals of Operations Research. ,vol. 186, pp. 141- 157 ,(2011) , 10.1007/S10479-011-0851-1
Michel Minoux, Riadh Zorgati, Convexity of Gaussian chance constraints and of related probability maximization problems Computational Statistics. ,vol. 31, pp. 387- 408 ,(2016) , 10.1007/S00180-015-0580-Z
A. Charnes, W. W. Cooper, Chance-Constrained Programming Management Science. ,vol. 6, pp. 73- 79 ,(1959) , 10.1287/MNSC.6.1.73
Jianqiang Cheng, Abdel Lisser, A second-order cone programming approach for linear programs with joint probabilistic constraints Operations Research Letters. ,vol. 40, pp. 325- 328 ,(2012) , 10.1016/J.ORL.2012.06.008
Panos Pardalos, Stephen A. Vavasis, Nonlinear optimization: complexity issues Mathematics of Computation. ,vol. 60, pp. 440- ,(1991) , 10.2307/2153188