Optimal Experimental Designs in Regression: A Bootstrap Approach

作者: J. P. Vila

DOI: 10.1007/978-3-642-48678-4_32

关键词:

摘要: This paper presents a new family of optimal design criteria for parameter estimation in nonlinear regression, based on minimization expected volumes of, at least second-order correct, bootstrap confidence regions.

参考文章(10)
Peter Hall, On the Bootstrap and Confidence Intervals Annals of Statistics. ,vol. 14, pp. 1431- 1452 ,(1986) , 10.1214/AOS/1176350168
Rudolf Beran, Prepivoting Test Statistics: A Bootstrap View of Asymptotic Refinements Journal of the American Statistical Association. ,vol. 83, pp. 687- 697 ,(1988) , 10.1080/01621459.1988.10478649
Anthony C. Atkinson, William G. Hunter, The Design of Experiments for Parameter Estimation Technometrics. ,vol. 10, pp. 271- 289 ,(1968) , 10.1080/00401706.1968.10490560
John W. Pratt, Length of Confidence Intervals Journal of the American Statistical Association. ,vol. 56, pp. 549- 567 ,(1961) , 10.1080/01621459.1961.10480644
RUDOLF BERAN, Prepivoting to reduce level error of confidence sets Biometrika. ,vol. 74, pp. 457- 468 ,(1987) , 10.1093/BIOMET/74.3.457
Vaclav Fabian, Stochastic Approximation of Minima with Improved Asymptotic Speed Annals of Mathematical Statistics. ,vol. 38, pp. 191- 200 ,(1967) , 10.1214/AOMS/1177699070
J. Kiefer, J. Wolfowitz, Optimum Designs in Regression Problems Annals of Mathematical Statistics. ,vol. 30, pp. 271- 294 ,(1959) , 10.1214/AOMS/1177706252
Donald G. Watts, David C. Hamilton, A Quadratic Design Criterion for Precise Estimation in Nonlinear Regression Models Technometrics. ,vol. 27, pp. 241- 250 ,(1985) , 10.2307/1269705
Max Halperin, Confidence Interval Estimation in Non-Linear Regression Journal of the Royal Statistical Society: Series B (Methodological). ,vol. 25, pp. 330- 333 ,(1963) , 10.1111/J.2517-6161.1963.TB00513.X