Updated European hydraulic pedotransfer functions with communicated uncertainties in the predicted variables (euptfv2)

作者: Melanie Weynants , Tobias K. D. Weber , Brigitta Szabó

DOI: 10.5194/GMD-14-151-2021

关键词:

摘要: Abstract. Soil hydraulic properties are often derived indirectly, i.e. computed from easily available soil with pedotransfer functions (PTFs), when those needed for catchment, regional or continental scale applications. When predicted parameters are used the modelling of state and flux water in soils, uncertainty of values can provide more detailed information drawing conclusions. The aim this study was to update previously published European PTFs (Toth et al., 2015, euptf v1.4.0) by providing prediction uncertainty calculation built into transfer functions. new set of algorithms point predictions content at saturation (0 cm matric potential head), field capacity (both − 100 330 cm wilting ( 15 000 cm head), plant water, saturated conductivity, as well the Mualem–van Genuchten model moisture retention and hydraulic conductivity curve. minimum input the prediction is depth sand, silt clay content. effect of including additional like organic carbon content, bulk density, calcium carbonate pH cation exchange were extensively analysed. were adopting random forest method. advantage that they (i) provide information about prediction uncertainty, (ii) are significantly accurate than the euptfv1, (iii) can be applied predictor variable combinations than the euptfv1, 32 instead 5, (iv) are now also at 100 cm head plant available A practical guidance on how use PTFs is provided.

参考文章(49)
Andreas Ziegler, Inke R. König, Mining data with random forests: current options for real-world applications Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery. ,vol. 4, pp. 55- 63 ,(2014) , 10.1002/WIDM.1114
B. Tóth, M. Weynants, A. Nemes, A. Makó, G. Bilas, G. Tóth, New generation of hydraulic pedotransfer functions for Europe European Journal of Soil Science. ,vol. 66, pp. 226- 238 ,(2015) , 10.1111/EJSS.12192
Nicolai Meinshausen, Quantile Regression Forests Journal of Machine Learning Research. ,vol. 7, pp. 983- 999 ,(2006)
H. Vereecken, J. A. Huisman, H. J. Hendricks Franssen, N. Brüggemann, H. R. Bogena, S. Kollet, M. Javaux, J. van der Kruk, J. Vanderborght, Soil hydrology: Recent methodological advances, challenges, and perspectives Water Resources Research. ,vol. 51, pp. 2616- 2633 ,(2015) , 10.1002/2014WR016852
W.J. Rawls, Y.A. Pachepsky, J.C. Ritchie, T.M. Sobecki, H. Bloodworth, Effect of soil organic carbon on soil water retention Geoderma. ,vol. 116, pp. 61- 76 ,(2003) , 10.1016/S0016-7061(03)00094-6
Anne-Laure Boulesteix, Silke Janitza, Jochen Kruppa, Inke R. König, Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery. ,vol. 2, pp. 493- 507 ,(2012) , 10.1002/WIDM.1072
H. Lin, Earth's Critical Zone and hydropedology: concepts, characteristics, and advances Hydrology and Earth System Sciences. ,vol. 14, pp. 25- 45 ,(2010) , 10.5194/HESS-14-25-2010
J. Tomasella, Ya. Pachepsky, S. Crestana, W. J. Rawls, Comparison of Two Techniques to Develop Pedotransfer Functions for Water Retention Soil Science Society of America Journal. ,vol. 67, pp. 1085- 1092 ,(2003) , 10.2136/SSSAJ2003.1085
Shmuel Assouline, Dani Or, Conceptual and Parametric Representation of Soil Hydraulic Properties: A Review Vadose Zone Journal. ,vol. 12, pp. 1- 20 ,(2013) , 10.2136/VZJ2013.07.0121
ATTILA Nemes, MG Schaap, JHM Wösten, None, Functional evaluation of pedotransfer functions derived from different scales of data collection Soil Science Society of America Journal. ,vol. 67, pp. 1093- 1102 ,(2003) , 10.2136/SSSAJ2003.1093