RC-Graphs and Schubert Polynomials

作者: Nantel Bergeron , Sara Billey

DOI: 10.1080/10586458.1993.10504567

关键词:

摘要: Using a formula of Billey, Jockusch and Stanley, Fomin Kirillov have introduced new set diagrams that encode the Schubert polynomials. We call these objects rc-graphs. define prove two variants an algorithm for constructing all rc-graphs given permutation. This construction makes many identities known polynomials more apparent, yields ones. In particular, we give proof Monk's rule using insertion on conjecture analogs Pieri's multiplying also extend to generate double

参考文章(8)
Michel Demazure, Désingularisation des variétés de Schubert généralisées Annales Scientifiques De L Ecole Normale Superieure. ,vol. 7, pp. 53- 88 ,(1974) , 10.24033/ASENS.1261
Sara C. Billey, William Jockusch, Richard P. Stanley, Some Combinatorial Properties of Schubert Polynomials Journal of Algebraic Combinatorics. ,vol. 2, pp. 345- 374 ,(1993) , 10.1023/A:1022419800503
Ian Grant Macdonald, Notes on Schubert polynomials LACIM, Université du Québec à Montréal. ,(1991)
Nantel Bergeron, A combinatorial construction of the Schubert polynomials Journal of Combinatorial Theory, Series A. ,vol. 60, pp. 168- 182 ,(1992) , 10.1016/0097-3165(92)90002-C
Alain Lascoux, Marcel-Paul Sch�tzenberger, Schubert polynomials and the Littlewood-Richardson rule Letters in Mathematical Physics. ,vol. 10, pp. 111- 124 ,(1985) , 10.1007/BF00398147
I N Bernstein, I M Gel'fand, S I Gel'fand, SCHUBERT CELLS AND COHOMOLOGY OF THE SPACES G/P Russian Mathematical Surveys. ,vol. 28, pp. 1- 26 ,(1973) , 10.1070/RM1973V028N03ABEH001557
S. Fomin, R.P. Stanley, Schubert Polynomials and the Nilcoxeter Algebra Advances in Mathematics. ,vol. 103, pp. 196- 207 ,(1994) , 10.1006/AIMA.1994.1009
Axel Kohnert, Weintrauben, Polynome, Tableaux Universität. ,(2006)