Subword complexes via triangulations of root polytopes

作者: Karola Mészáros , Laura Escobar

DOI:

关键词:

摘要: Subword complexes are simplicial introduced by Knutson and Miller to illustrate the combinatorics of Schubert polynomials determinantal ideals. They proved that any subword complex is homeomorphic a ball or sphere asked about their geometric realizations. We show family can be realized geometrically via regular triangulations root polytopes. This implies $\beta$-Grothendieck special cases reduced forms in subdivision algebra also write volume Ehrhart series polytopes terms polynomials.

参考文章(15)
Israel M. Gelfand, Mark I. Graev, Alexander Postnikov, Combinatorics of hypergeometric functions associated with positive roots Birkhäuser Boston. pp. 205- 221 ,(1997) , 10.1007/978-1-4612-4122-5_10
Karola Mészáros, Pipe Dream Complexes and Triangulations of Root Polytopes Belong Together SIAM Journal on Discrete Mathematics. ,vol. 30, pp. 100- 111 ,(2016) , 10.1137/15M1014802
Nantel Bergeron, Sara Billey, RC-Graphs and Schubert Polynomials Experimental Mathematics. ,vol. 2, pp. 257- 269 ,(1993) , 10.1080/10586458.1993.10504567
Allen Knutson, Ezra Miller, Subword complexes in Coxeter groups Advances in Mathematics. ,vol. 184, pp. 161- 176 ,(2004) , 10.1016/S0001-8708(03)00142-7
Vincent Pilaud, Francisco Santos, The brick polytope of a sorting network The Journal of Combinatorics. ,vol. 33, pp. 632- 662 ,(2012) , 10.1016/J.EJC.2011.12.003
Christian Stump, A new perspective on k-triangulations Journal of Combinatorial Theory, Series A. ,vol. 118, pp. 1794- 1800 ,(2011) , 10.1016/J.JCTA.2011.03.001
Karola Mészáros, Root polytopes, triangulations, and the subdivision algebra. I Transactions of the American Mathematical Society. ,vol. 363, pp. 4359- 4382 ,(2011) , 10.1090/S0002-9947-2011-05371-7
Allen Knutson, Ezra Miller, Gröbner geometry of Schubert polynomials Annals of Mathematics. ,vol. 161, pp. 1245- 1318 ,(2005) , 10.4007/ANNALS.2005.161.1245