Gröbner geometry of Schubert polynomials

作者: Allen Knutson , Ezra Miller

DOI: 10.4007/ANNALS.2005.161.1245

关键词:

摘要: Given a permutation w ?? Sn, we consider determinantal ideal Iw whose generators are certain minors in the generic n ?~ matrix (filled with independent variables). Using ?emultidegrees?f as simple algebraic substitutes for torus-equivariant cohomology classes on vector spaces, our main theorems describe, each Iw.

参考文章(52)
Michel Demazure, Désingularisation des variétés de Schubert généralisées Annales Scientifiques De L Ecole Normale Superieure. ,vol. 7, pp. 53- 88 ,(1974) , 10.24033/ASENS.1261
Sara C. Billey, William Jockusch, Richard P. Stanley, Some Combinatorial Properties of Schubert Polynomials Journal of Algebraic Combinatorics. ,vol. 2, pp. 345- 374 ,(1993) , 10.1023/A:1022419800503
H. Jürgen Herzog, Winfried Bruns, Cohen-Macaulay rings ,(1993)
William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas Duke Mathematical Journal. ,vol. 65, pp. 381- 420 ,(1992) , 10.1215/S0012-7094-92-06516-1
Ian Grant Macdonald, Notes on Schubert polynomials LACIM, Université du Québec à Montréal. ,(1991)
C. Krattenthaler, M. Prohaska, A remarkable formula for counting nonintersecting lattice paths in a ladder with respect to turns Transactions of the American Mathematical Society. ,vol. 351, pp. 1015- 1042 ,(1999) , 10.1090/S0002-9947-99-01884-X
Burt Totaro, The Chow ring of a classifying space arXiv: Algebraic Geometry. ,(1998)
Sara Billey, V. Lakshmibai, Singular Loci of Schubert Varieties ,(2000)