Subword complexes in Coxeter groups

作者: Allen Knutson , Ezra Miller

DOI: 10.1016/S0001-8708(03)00142-7

关键词: Hilbert–Poincaré seriesCoxeter elementContext (language use)Discrete mathematicsFormal power seriesAlgebraic combinatoricsSimplicial complexCoxeter complexCombinatoricsMathematicsCoxeter groupGeneral Mathematics

摘要: Abstract Let ( Π , Σ ) be a Coxeter system. An ordered list of elements in and an element determine subword complex as introduced Knutson Miller (Ann. Math. (2) (2003), to appear). Subword complexes are demonstrated here homeomorphic balls or spheres, their Hilbert series shown reflect combinatorial properties reduced expressions groups. Two formulae for double Grothendieck polynomials, one which appeared Fomin Kirillov (Proceedings the Sixth Conference Formal Power Series Algebraic Combinatorics, DIMACS, 1994, pp. 183–190), recovered context simplicial topology complexes. Some open questions related presented.

参考文章(19)
Michel Demazure, Désingularisation des variétés de Schubert généralisées Annales Scientifiques De L Ecole Normale Superieure. ,vol. 7, pp. 53- 88 ,(1974) , 10.24033/ASENS.1261
Sara C. Billey, William Jockusch, Richard P. Stanley, Some Combinatorial Properties of Schubert Polynomials Journal of Algebraic Combinatorics. ,vol. 2, pp. 345- 374 ,(1993) , 10.1023/A:1022419800503
Richard P. Stanley, Combinatorics and commutative algebra ,(1983)
William Fulton, Flags, Schubert polynomials, degeneracy loci, and determinantal formulas Duke Mathematical Journal. ,vol. 65, pp. 381- 420 ,(1992) , 10.1215/S0012-7094-92-06516-1
Ian Grant Macdonald, Notes on Schubert polynomials LACIM, Université du Québec à Montréal. ,(1991)
Kohji Yanagawa, Alexander Duality for Stanley–Reisner Rings and Squarefree Nn-Graded Modules Journal of Algebra. ,vol. 225, pp. 630- 645 ,(2000) , 10.1006/JABR.1999.8130
Nantel Bergeron, Sara Billey, RC-Graphs and Schubert Polynomials Experimental Mathematics. ,vol. 2, pp. 257- 269 ,(1993) , 10.1080/10586458.1993.10504567
James E. Humphreys, Reflection groups and coxeter groups ,(1990)
Anders Björner, Bernhard Korte, László Lovász, Homotopy properties of greedoids Advances in Applied Mathematics. ,vol. 6, pp. 447- 494 ,(1985) , 10.1016/0196-8858(85)90021-1
Anders Björner, Michelle Wachs, Bruhat Order of Coxeter Groups and Shellability Advances in Mathematics. ,vol. 43, pp. 87- 100 ,(1982) , 10.1016/0001-8708(82)90029-9