Antiviral activity of carbohydrate-binding agents against Nidovirales in cell culture.

作者: F VANDERMEER , C DEHAAN , N SCHUURMAN , B HAIJEMA , W PEUMANS

DOI: 10.1016/J.ANTIVIRAL.2007.04.003

关键词:

摘要: Coronaviruses are important human and animal pathogens, the relevance of which increased due to emergence new coronaviruses like SARS-CoV, HKU1 NL63. Together with toroviruses, arteriviruses, roniviruses belong order Nidovirales. So far antivirals hardly available combat infections viruses this order. Therefore, various antiviral strategies counter nidoviral under evaluation. Lectins, bind N-linked oligosaccharide elements enveloped viruses, can be considered as a conceptionally class virus inhibitors. These agents were recently evaluated for their activity towards variety shown in most cases inhibit infection at low concentrations. However, limited knowledge is efficacy nidoviruses. In article application plant lectins Hippeastrum hybrid agglutinin (HHA), Galanthus nivalis (GNA), Cymbidium sp. (CA) Urtica dioica (UDA) well non-plant derived pradimicin-A (PRM-A) cyanovirin-N (CV-N) potential was evaluated. Three tests compared based on different evaluation principles: cell viability (MTT-based colorimetric assay), number infected cells (immunoperoxidase assay) amount viral protein expression (luciferase-based assay). The presence carbohydrate-binding strongly inhibited (transmissible gastroenteritis virus, infectious bronchitis feline serotypes I II, mouse hepatitis virus), arteriviruses (equine arteritis porcine respiratory reproductive syndrome virus) torovirus Berne virus). Remarkably, serotype II not by PRM-A, contrast other tested.

参考文章(66)
Els JM Van Damme, Willy J Peumans, Arpad Pusztai, Susan Bardocz, Handbook of plant lectins : properties and biomedical applications John Wiley. ,(1998)
Yasuhiro Igarashi, Toshikazu Oki, Mannose-Binding Quinone Glycoside, MBQ: Potential Utility and Action Mechanism Advances in Applied Microbiology. ,vol. 54, pp. 147- 166 ,(2004) , 10.1016/S0065-2164(04)54006-6
Nicolas Meeùs, Malou M-Louise Haine, Van Damme A. P. Mardaga. pp. 416- 417 ,(1986)
P J Rottier, M C Horzinek, B A van der Zeijst, Viral protein synthesis in mouse hepatitis virus strain A59-infected cells: effect of tunicamycin. Journal of Virology. ,vol. 40, pp. 350- 357 ,(1981) , 10.1128/JVI.40.2.350-357.1981
T. Hohdatsu, Y. Izumiya, Y. Yokoyama, K. Kida, H. Koyama, Differences in virus receptor for type I and type II feline infectious peritonitis virus Archives of Virology. ,vol. 143, pp. 839- 850 ,(1998) , 10.1007/S007050050336
Alexander E. Gorbalenya, Luis Enjuanes, John Ziebuhr, Eric J. Snijder, Nidovirales: Evolving the largest RNA virus genome Virus Research. ,vol. 117, pp. 17- 37 ,(2006) , 10.1016/J.VIRUSRES.2006.01.017
John-Erik S. Hansen, Claus. Nielsen, Peter Heegaard, Lars R. Mathiesen, Jens O. Nielsen, Correlation between carbohydrate structures on the envelope glycoprotein gp120 of HIV-1 and HIV-2 and syncytium inhibition with lectins. AIDS. ,vol. 3, pp. 635- 641 ,(1989) , 10.1097/00002030-198910000-00003
A.A.P.M. Herrewegh, M. Mähler, H.J. Hedrich, B.L. Haagmans, H.F. Egberink, M.C. Horzinek, P.J.M. Rottier, R.J. de Groot, Persistence and evolution of feline coronavirus in a closed cat-breeding colony. Virology. ,vol. 234, pp. 349- 363 ,(1997) , 10.1006/VIRO.1997.8663
Firelli V. Alonso-Caplen, Yumiko Matsuoka, Graham E. Wilcox, Richard W. Compans, Replication and morphogenesis of avian coronavirus in Vero cells and their inhibition by monensin Virus Research. ,vol. 1, pp. 153- 167 ,(1984) , 10.1016/0168-1702(84)90070-4
Alicia E Smith, Ari Helenius, How Viruses Enter Animal Cells Science. ,vol. 304, pp. 237- 242 ,(2004) , 10.1126/SCIENCE.1094823