Influence of electrode mismatch on Cole parameter estimation from Total Right Side Electrical Bioimpedance Spectroscopy measurements

作者: Rubén Buendía , Paco Bogónez-Franco , Lexa Nescolarde , Fernando Seoane

DOI: 10.1016/J.MEDENGPHY.2012.05.011

关键词:

摘要: Applications based on measurements of Electrical Bioimpedance (EBI) spectroscopy analysis, like assessment body composition, have proliferated in the past years. Currently Body Composition Assessment (BCA) Spectroscopy (BIS) analysis relays an accurate estimation Cole parameters R0 and R∞. A recent study by Bogonez-Franco et al. has proposed electrode mismatch as source remarkable artefacts BIS measurements. Using Total Right Side from aforementioned study, this work focused influence R∞ using Non-Linear Least Square curve fitting technique modulus impedance. The results show that voltage sensing electrodes produces overestimation impedance spectrum leading to a wrong R∞, consequently obtaining values around 4% larger obtained without mismatch. specific key factors behind or its single not been investigated yet, no compensation correction is available overcome deviation produced EBI measurement. Since textile-enabled applications dry textrodes, i.e. textile with skin–electrode interfaces potentially large polarization are more prone produce mismatch, lack might hinder proliferation for personalized healthcare monitoring.

参考文章(28)
T. Vuorela, V-P. Seppä, J. Vanhala, J. Hyttinen, Wireless Measurement System for Bioimpedance and ECG Springer, Berlin, Heidelberg. pp. 248- 251 ,(2007) , 10.1007/978-3-540-73841-1_66
Juan Carlos Marquez, On the Feasibility of Using Textile Electrodes for Electrical Bioimpedance Measurements Stockholm :Skolan för teknik och hälsa, Kungliga Tekniska högskolan. ,(2011)
Guillermo Medrano, L. Beckmann, N. Zimmermann, T. Grundmann, T. Gries, S. Leonhardt, Bioimpedance Spectroscopy with textile Electrodes for a continuous Monitoring Application wearable and implantable body sensor networks. pp. 23- 28 ,(2007) , 10.1007/978-3-540-70994-7_4
H Scharfetter, P Hartinger, H Hinghofer-Szalkay, H Hutten, A model of artefacts produced by stray capacitance during whole body or segmental bioimpedance spectroscopy Physiological Measurement. ,vol. 19, pp. 247- 261 ,(1998) , 10.1088/0967-3334/19/2/012
A. De Lorenzo, A. Andreoli, J. Matthie, P. Withers, Predicting body cell mass with bioimpedance by using theoretical methods: a technological review Journal of Applied Physiology. ,vol. 82, pp. 1542- 1558 ,(1997) , 10.1152/JAPPL.1997.82.5.1542
S. Kun, R. A. Peura, Selection of measurement frequencies for optimal extraction of tissue impedance model parameters Medical & Biological Engineering & Computing. ,vol. 37, pp. 699- 703 ,(1999) , 10.1007/BF02513370
P Bogónez-Franco, L Nescolarde, R Bragós, J Rosell-Ferrer, I Yandiola, Measurement errors in multifrequency bioelectrical impedance analyzers with and without impedance electrode mismatch. Physiological Measurement. ,vol. 30, pp. 573- 587 ,(2009) , 10.1088/0967-3334/30/7/004
F Seoane, Rubén Buendía, R Gil-Pita, Cole parameter estimation from electrical bioconductance spectroscopy measurements international conference of the ieee engineering in medicine and biology society. ,vol. 2010, pp. 3495- 3498 ,(2010) , 10.1109/IEMBS.2010.5627790
M P Bolton, L C Ward, A Khan, I Campbell, P Nightingale, O Dewit, M Elia, Sources of error in bioimpedance spectroscopy Physiological Measurement. ,vol. 19, pp. 235- 245 ,(1998) , 10.1088/0967-3334/19/2/011