ExAMiner: optimized level-wise frequent pattern mining with monotone constraints

作者: F. Bonchi , F. Giannotti , A. Mazzanti , D. Pedreschi

DOI: 10.1109/ICDM.2003.1250892

关键词:

摘要: The key point is that, in frequent pattern mining, the most appropriate way of exploiting monotone constraints conjunction with frequency to use them order reduce problem input together search space. Following this intuition, we introduce ExAMiner, a level-wise algorithm which exploits real synergy antimonotone and constraints: total benefit greater than sum two individual benefits. ExAMiner generalizes basic idea preprocessing ExAnte [F. Bonchi et al., (2003)], embedding such ideas at all levels an Apriori-like computation. resulting generalization Apriori when conjoined constraint. Experimental results confirm that is, so far, efficient attacking computational analysis.

参考文章(13)
R. Baraglia, D. Laforenza, Salvatore Orlando, P. Palmerini, Raffaele Perego, Implementation Issues in the Design of I/O Intensive Data Mining Applications on Clusters of Workstations international parallel and distributed processing symposium. ,vol. 1800, pp. 350- 357 ,(2000) , 10.1007/3-540-45591-4_46
Ramakrishnan Srikant, Rakesh Agrawal, Fast Algorithms for Mining Association Rules in Large Databases very large data bases. pp. 487- 499 ,(1994)
Ramakrishnan Srikant, Quoc Vu, Rakesh Agrawal, Mining association rules with item constraints knowledge discovery and data mining. pp. 67- 73 ,(1997)
Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, Dino Pedreschi, ExAnte: Anticipated Data Reduction in Constrained Pattern Mining european conference on principles of data mining and knowledge discovery. pp. 59- 70 ,(2003) , 10.1007/978-3-540-39804-2_8
Cristian Bucila, Johannes Gehrke, Daniel Kifer, Walker White, DualMiner Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD '02. pp. 42- 51 ,(2002) , 10.1145/775047.775054
Jiawei Han, Laks VS Lakshmanan, Raymond T Ng, Constraint-based, multidimensional data mining Computer. ,vol. 32, pp. 46- 50 ,(1999) , 10.1109/2.781634
Zijian Zheng, Ron Kohavi, Llew Mason, Real world performance of association rule algorithms knowledge discovery and data mining. pp. 401- 406 ,(2001) , 10.1145/502512.502572
Jong Soo Park, Ming-Syan Chen, Philip S. Yu, An effective hash-based algorithm for mining association rules international conference on management of data. ,vol. 24, pp. 175- 186 ,(1995) , 10.1145/223784.223813
Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, Alex Pang, Exploratory mining and pruning optimizations of constrained associations rules Proceedings of the 1998 ACM SIGMOD international conference on Management of data - SIGMOD '98. ,vol. 27, pp. 13- 24 ,(1998) , 10.1145/276304.276307
Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, Dino Pedreschi, Adaptive Constraint Pushing in Frequent Pattern Mining european conference on principles of data mining and knowledge discovery. pp. 47- 58 ,(2003) , 10.1007/978-3-540-39804-2_7