Constructive mathematics: a foundation for computable analysis

作者: Douglas S. Bridges

DOI: 10.1016/S0304-3975(98)00285-0

关键词:

摘要: This paper introduces Bishop's constructive mathematics, which can be regarded as the core of mathematics and whose theorems translated into many formal systems computable analysis. The real numbers are presented using a set axioms, from derived some elementary properties line R, including its completeness.

参考文章(26)
Richard Rorty, From Frege to Gödel ,(1967)
Michael J. Beeson, Foundations of Constructive Mathematics Springer Berlin Heidelberg. ,(1985) , 10.1007/978-3-642-68952-9
John Myhill, Some properties of intuitionistic zermelo-frankel set theory Cambridge Summer School in Mathematical Logic. ,vol. 337, pp. 206- 231 ,(1973) , 10.1007/BFB0066775
L. E. J. Brouwer, Over de Grondslagen der Wiskunde ,(2009)
A. Heyting, Die formalen Regeln der intuitionistischen Logik Verlag der Akademie der Wissenschaften. ,(1930)
Douglas Sutherland Bridges, Constructive mathematics - its set theory and practice University of Oxford. ,(1974)
Solomon Feferman, Constructive Theories of Functions and Classes Studies in logic and the foundations of mathematics. ,vol. 97, pp. 159- 224 ,(1979) , 10.1016/S0049-237X(08)71625-2
Hiroshi Nakano, Susumu Hayashi, PX, a computational logic ,(1988)
Dimiter G. Skordev, Mathematical Logic and Its Applications ,(2011)
Fred Richman, Interview with a constructive mathematician Modern Logic. ,vol. 6, pp. 247- 271 ,(1996)