Bayesian compressive sensing of wavelet coefficients using multiscale Laplacian priors

作者: Esteban Vera , Luis Mancera , S. Derin Babacan , Rafael Molina , Aggelos K. Katsaggelos

DOI: 10.1109/SSP.2009.5278598

关键词:

摘要: In this paper, we propose a novel algorithm for image reconstruction from compressive measurements of wavelet coefficients. By incorporating independent Laplace priors on separate sub-bands, the inhomogeneity coefficient distributions and therefore structural sparsity within images are modeled effectively. We model problem by adopting Bayesian formulation, develop fast greedy algorithm. Experimental results demonstrate that performance proposed is competitive with state-of-the-art methods while outperforming them in terms running times.

参考文章(13)
Michael E Tipping, Sparse bayesian learning and the relevance vector machine Journal of Machine Learning Research. ,vol. 1, pp. 211- 244 ,(2001) , 10.1162/15324430152748236
Marco F. Duarte, Michael B. Wakin, Richard G. Baraniuk, Wavelet-domain compressive signal reconstruction using a Hidden Markov Tree model international conference on acoustics, speech, and signal processing. pp. 5137- 5140 ,(2008) , 10.1109/ICASSP.2008.4518815
Lihan He, L. Carin, Exploiting Structure in Wavelet-Based Bayesian Compressive Sensing IEEE Transactions on Signal Processing. ,vol. 57, pp. 3488- 3497 ,(2009) , 10.1109/TSP.2009.2022003
S.D. Babacan, R. Molina, A.K. Katsaggelos, Bayesian Compressive Sensing Using Laplace Priors IEEE Transactions on Image Processing. ,vol. 19, pp. 53- 63 ,(2010) , 10.1109/TIP.2009.2032894
Shihao Ji, Ya Xue, Lawrence Carin, Bayesian Compressive Sensing IEEE Transactions on Signal Processing. ,vol. 56, pp. 2346- 2356 ,(2008) , 10.1109/TSP.2007.914345
David L. Donoho, Yaakov Tsaig, Fast Solution of $\ell _{1}$ -Norm Minimization Problems When the Solution May Be Sparse IEEE Transactions on Information Theory. ,vol. 54, pp. 4789- 4812 ,(2008) , 10.1109/TIT.2008.929958
MÁrio A. T. Figueiredo, Robert D. Nowak, Stephen J. Wright, Gradient Projection for Sparse Reconstruction: Application to Compressed Sensing and Other Inverse Problems IEEE Journal of Selected Topics in Signal Processing. ,vol. 1, pp. 586- 597 ,(2007) , 10.1109/JSTSP.2007.910281
Rosa M. Figueras i Ventura, Eero P. Simoncelli, Statistically Driven Sparse Image Approximation international conference on image processing. ,vol. 1, pp. 461- 464 ,(2007) , 10.1109/ICIP.2007.4378991
Richard G. Baraniuk, Volkan Cevher, Marco F. Duarte, Chinmay Hegde, Model-Based Compressive Sensing IEEE Transactions on Information Theory. ,vol. 56, pp. 1982- 2001 ,(2010) , 10.1109/TIT.2010.2040894
E.J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information IEEE Transactions on Information Theory. ,vol. 52, pp. 489- 509 ,(2006) , 10.1109/TIT.2005.862083