The lattice Schwinger model as a discrete sum of filled Wilson loops

作者: Christof Gattringer

DOI: 10.1016/S0550-3213(99)00467-8

关键词:

摘要: Abstract Using techniques from hopping expansion we identically map the lattice Schwinger model with Wilson fermions to a of oriented loops on lattice. This is done by first computing explicit form fermion determinant in external field. Subsequent integration gauge fields renders sum over all loop configurations simple Gaussian weights depending number plaquettes enclosed loops. In our new representation vacuum expectation values local fermionic operators (scalars, vectors) can be computed simply counting flow through sites (links) supporting scalars (vectors). The strong coupling limit, possible applications methods 4-D models and introduction chemical potential are discussed.

参考文章(33)
Harro Heuser, Lehrbuch der Analysis Vieweg+Teubner Verlag. ,(1991) , 10.1007/978-3-322-94097-1
Barry Simon, Michael Reed, Methods of Modern Mathematical Physics ,(1972)
Istvan Montvay, Gernot Münster, Quantum Fields on a Lattice ,(1994)
M. Karowski, R. Schrader, H. J. Thun, Monte Carlo Simulations for Quantum Field Theories Involving Fermions Quantum Field Theory. ,vol. 97, pp. 5- 29 ,(1985) , 10.1007/978-3-642-70307-2_2
I. O. Stamatescu, Note on the lattice fermionic determinant Physical Review D. ,vol. 25, pp. 1130- 1135 ,(1982) , 10.1103/PHYSREVD.25.1130
I. Montvay, Simulation of staggered fermions by polymer averaging Physics Letters B. ,vol. 227, pp. 260- 265 ,(1989) , 10.1016/S0370-2693(89)80033-4
Chungpeng Fan, F. Y. Wu, General Lattice Model of Phase Transitions Physical Review B. ,vol. 2, pp. 723- 733 ,(1970) , 10.1103/PHYSREVB.2.723