What Can We Learn about Correlations from Multinomial Probit Estimates

作者: Chiara Monfardini , Chiara Monfardini , J.M.C. Santos Silva

DOI: 10.6092/UNIBO/AMSACTA/4729

关键词:

摘要: It is well known that, in a multinomial probit, only the covariance matrix of the location and scale normalized utilities are identified. In this study, we explore the relation between these identifiable parameters original elements of the covariance matrix, to find out what can be learnt about correlations between the stochastic components non-normalized utilities. We show certain circumstances, it possible obtain information on behavioural parameters and define appropriate tools for inference. illustrate usefulness our results in applied settings using an example.

参考文章(12)
A. Colin Cameron, Pravin K. Trivedi, Microeconometrics : methods and applications Cambridge University Press. ,(2005) , 10.1017/CBO9780511811241
B.R. Dansie, Parameter estimability in the multinomial probit model Transportation Research Part B: Methodological. ,vol. 19, pp. 526- 528 ,(1985) , 10.1016/0191-2615(85)90047-5
Michael D. Perlman, One-Sided Testing Problems in Multivariate Analysis Annals of Mathematical Statistics. ,vol. 40, pp. 549- 567 ,(1969) , 10.1214/AOMS/1177697723
Andrew Chesher, J.M.C. Santos Silva, Taste variation in discrete choice models The Review of Economic Studies. ,vol. 69, pp. 147- 168 ,(2002) , 10.1111/1467-937X.00201
Chiara Monfardini, An illustration of Cox's non-nested testing procedure for logit and probit models Computational Statistics & Data Analysis. ,vol. 42, pp. 425- 444 ,(2003) , 10.1016/S0167-9473(02)00216-5
David S. Bunch, Estimability in the multinomial probit model Transportation Research Part B: Methodological. ,vol. 25, pp. 1- 12 ,(1991) , 10.1016/0191-2615(91)90009-8
Daniel McFadden, Kenneth Train, MIXED MNL MODELS FOR DISCRETE RESPONSE Journal of Applied Econometrics. ,vol. 15, pp. 447- 470 ,(2000) , 10.1002/1099-1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1