Hamiltonian triangulations for fast rendering

作者: Esther M. Arkin , Martin Held , Joseph S. B. Mitchell , Steven S. Skiena

DOI: 10.1007/BFB0049395

关键词:

摘要: High-performance rendering engines in computer graphics are often pipelined, and their speed is bounded by the rate at which triangulation data can be sent into machine. To reduce rate, it desirable to order triangles so that consecutive share a face, meaning only one additional vertex need transmitted describe each triangle. Such an ordering exists if dual graph of contains Hamiltonian path. In this paper, we consider several problems concerning triangulations with duals related class “sequential triangulations”.

参考文章(19)
Gray Frank, Pulse code communication ,(1947)
Henry Crapo, Jean-Paul Laumond, Hamiltonian cycles in Delaunay complexes Proceedings of the Workshop on Geometry and Robotics. pp. 292- 305 ,(1988) , 10.1007/3-540-51683-2_36
M. Yvinec, Triangulation in 2d and 3d space Proceedings of the Workshop on Geometry and Robotics. pp. 275- 291 ,(1988) , 10.1007/3-540-51683-2_35
Herbert S. Wilf, Combinatorial Algorithms: An Update ,(1987)
Prosenjit Bose, Godfried Toussaint, No Quadrangulation is Extremely Odd international symposium on algorithms and computation. pp. 372- 381 ,(1995) , 10.1007/BFB0015443
MARSHALL BERN, DAVID EPPSTEIN, MESH GENERATION AND OPTIMAL TRIANGULATION WORLD SCIENTIFIC. pp. 23- 90 ,(1992) , 10.1142/9789812831699_0003
J. O'Rourke, K. Supowit, Some NP-hard polygon decomposition problems IEEE Transactions on Information Theory. ,vol. 29, pp. 181- 190 ,(1983) , 10.1109/TIT.1983.1056648
Michael B. Dillencourt, A non-Hamiltonian, nondegenerate Delaunay Triangulation Information Processing Letters. ,vol. 25, pp. 149- 151 ,(1987) , 10.1016/0020-0190(87)90124-4
Michael B. Dillencourt, Hamiltonian cycles in planar triangulations with no separating triangles Journal of Graph Theory. ,vol. 14, pp. 31- 49 ,(1990) , 10.1002/JGT.3190140105
N. Prabhu, Hamiltonian simple polytopes Discrete and Computational Geometry. ,vol. 14, pp. 301- 304 ,(1995) , 10.1007/BF02570708