Hamiltonian cycles in planar triangulations with no separating triangles

作者: Michael B. Dillencourt

DOI: 10.1002/JGT.3190140105

关键词:

摘要: A classical theorem of Hassler Whitney asserts that any maximal planar graph with no separating triangles is Hamiltonian. In this paper, we examine the problem generalizing Whitney's by relaxing requirement triangulation be a (i.e., its outer boundary triangle) while maintaining hypothesis have triangles. It shown conclusion still holds if chords satisfy certain sparse-ness condition and Hamiltonian cycle through satisfying can found in linear time. Upper bounds on shortness coefficient triangulations without are established. Several examples given to show theorems presented here cannot extended strong additional hypotheses. particular, 1-tough, non-Hamiltonian presented.

参考文章(17)
David Shmoys, Eugene L. Lawler, Alexander H. G. Rinnooy Kan, Jan Karel Lenstra, The traveling salesman problem ,(1985)
W. T. Tutte, Bridges and Hamiltonian circuits in planar graphs Aequationes Mathematicae. ,vol. 15, pp. 1- 33 ,(1977) , 10.1007/BF01837870
V. Chvátal, Tough graphs and hamiltonian circuits Discrete Mathematics. ,vol. 306, pp. 215- 228 ,(1973) , 10.1016/0012-365X(73)90138-6
P. R. Goodey, A class of Hamiltonian polytopes Journal of Graph Theory. ,vol. 1, pp. 181- 185 ,(1977) , 10.1002/JGT.3190010213
Michael B. Dillencourt, A non-Hamiltonian, nondegenerate Delaunay Triangulation Information Processing Letters. ,vol. 25, pp. 149- 151 ,(1987) , 10.1016/0020-0190(87)90124-4
Hassler Whitney, A Theorem on Graphs Hassler Whitney Collected Papers. ,vol. 32, pp. 24- 36 ,(1992) , 10.1007/978-1-4612-2972-8_2
Branko Grünbaum, Hansjoachim Walther, Shortness exponents of families of graphs Journal of Combinatorial Theory, Series A. ,vol. 14, pp. 364- 385 ,(1973) , 10.1016/0097-3165(73)90012-5
Joseph O'Rourke, Heather Booth, Richard Washington, Connect-the-dots: a new heuristic Graphical Models \/graphical Models and Image Processing \/computer Vision, Graphics, and Image Processing. ,vol. 39, pp. 258- 266 ,(1987) , 10.1016/S0734-189X(87)80169-X
Takao Nishizeki, A 1-tough nonhamiltonian maximal planar graph Discrete Mathematics. ,vol. 30, pp. 305- 307 ,(1980) , 10.1016/0012-365X(80)90240-X
W. T. Tutte, A THEOREM ON PLANAR GRAPHS Transactions of the American Mathematical Society. ,vol. 82, pp. 99- 116 ,(1956) , 10.1090/S0002-9947-1956-0081471-8