Shape analysis using the auto diffusion function

作者: K. Gȩbal , J. A. Baerentzen , H. Aanaes , R. Larsen

DOI: 10.1111/J.1467-8659.2009.01517.X

关键词:

摘要: Scalar functions defined on manifold triangle meshes is a starting point for many geometry processing algorithms such as mesh parametrization, skeletonization, and segmentation. In this paper, we propose the Auto Diffusion Function (ADF) which linear combination of eigenfunctions Laplace-Beltrami operator in way that has simple physical interpretation. The ADF given 3D object number further desirable properties: Its extrema are generally at tips features object, its gradients level sets follow or encircle features, respectively, it controlled by single parameter can be interpreted feature scale, and, finally, invariant to rigid isometric deformations. We describe properties detail compare other choices scalar manifolds. As an example application, present pose invariant, hierarchical skeletonization segmentation algorithm makes direct use ADF.

参考文章(39)
Julien Tierny, Reeb graph based 3D shape modeling and applications Université des Sciences et Technologie de Lille - Lille I. ,(2008)
Marc Alexa, Differential coordinates for local mesh morphing and deformation The Visual Computer. ,vol. 19, pp. 105- 114 ,(2003) , 10.1007/S00371-002-0180-0
M. Attene, S. Biasotti, M. Spagnuolo, Shape understanding by contour-driven retiling The Visual Computer. ,vol. 19, pp. 127- 138 ,(2003) , 10.1007/S00371-002-0182-Y
Silvia Biasotti, Bianca Falcidieno, Michela Spagnuolo, Extended Reeb Graphs for Surface Understanding and Description discrete geometry for computer imagery. pp. 185- 197 ,(2000) , 10.1007/3-540-44438-6_16
Raif M. Rustamov, Laplace-Beltrami eigenfunctions for deformation invariant shape representation symposium on geometry processing. pp. 225- 233 ,(2007) , 10.5555/1281991.1282022
S. Dong, S. Kircher, M. Garland, Harmonic functions for quadrilateral remeshing of arbitrary manifolds Computer Aided Geometric Design. ,vol. 22, pp. 392- 423 ,(2005) , 10.1016/J.CAGD.2005.04.004
D. Steiner, A. Fischer, Topology recognition of 3D closed freeform objects based on topological graphs acm symposium on solid modeling and applications. pp. 305- 306 ,(2001) , 10.1145/376957.376994
Ulrich Pinkall, Konrad Polthier, Computing Discrete Minimal Surfaces and Their Conjugates Experimental Mathematics. ,vol. 2, pp. 15- 36 ,(1993) , 10.1080/10586458.1993.10504266
Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, John C. Hart, Spectral surface quadrangulation international conference on computer graphics and interactive techniques. ,vol. 25, pp. 1057- 1066 ,(2006) , 10.1145/1141911.1141993