Equi-affine Invariant Geometries of Articulated Objects

作者: Dan Raviv , Alexander M. Bronstein , Michael M. Bronstein , Ron Kimmel , Nir Sochen

DOI: 10.1007/978-3-642-34091-8_8

关键词:

摘要: We introduce an (equi-)affine invariant geometric structure by which surfaces that go through squeeze and shear transformations can still be properly analyzed. The definition of affine metric enables us to evaluate a new form geodesic distances construct Laplacian from local global diffusion geometry is constructed. Applications the proposed framework demonstrate its power in generalizing enriching existing set tools for shape analysis.

参考文章(30)
Gerhard Dziuk, Finite Elements for the Beltrami operator on arbitrary surfaces Lecture Notes in Mathematics. pp. 142- 155 ,(1988) , 10.1007/BFB0082865
Pu-chʿing Su, Affine differential geometry Science Press , Gordon and Breach. ,(1983)
A. Elad, Y. Keller, R. Kimmel, Texture mapping via spherical multi-dimensional scaling Lecture Notes in Computer Science. pp. 443- 455 ,(2005) , 10.1007/11408031_38
Raif M. Rustamov, Laplace-Beltrami eigenfunctions for deformation invariant shape representation symposium on geometry processing. pp. 225- 233 ,(2007) , 10.5555/1281991.1282022
Dmitri Burago, Yuri Burago, Sergei Ivanov, A Course in Metric Geometry ,(2001)
Dan Raviv, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, Nir Sochen, Short Communication to SMI 2011: Affine-invariant geodesic geometry of deformable 3D shapes Computers & Graphics. ,vol. 35, pp. 692- 697 ,(2011) , 10.1016/J.CAG.2011.03.030
Facundo Mémoli, Guillermo Sapiro, A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data Foundations of Computational Mathematics. ,vol. 5, pp. 313- 347 ,(2005) , 10.1007/S10208-004-0145-Y
R. Kimmel, J. A. Sethian, Computing geodesic paths on manifolds Proceedings of the National Academy of Sciences of the United States of America. ,vol. 95, pp. 8431- 8435 ,(1998) , 10.1073/PNAS.95.15.8431
Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, Efficient Computation of Isometry-Invariant Distances Between Surfaces SIAM Journal on Scientific Computing. ,vol. 28, pp. 1812- 1836 ,(2006) , 10.1137/050639296
Dan Raviv, Michael M. Bronstein, Alexander M. Bronstein, Ron Kimmel, Nir Sochen, Affine-invariant diffusion geometry for the analysis of deformable 3D shapes CVPR 2011. pp. 2361- 2367 ,(2011) , 10.1109/CVPR.2011.5995486