Short Communication to SMI 2011: Affine-invariant geodesic geometry of deformable 3D shapes

作者: Dan Raviv , Alexander M. Bronstein , Michael M. Bronstein , Ron Kimmel , Nir Sochen

DOI: 10.1016/J.CAG.2011.03.030

关键词:

摘要: Natural objects can be subject to various transformations yet still preserve properties that we refer as invariants. Here, use definitions of affine-invariant arclength for surfaces in R^3 order extend the set existing non-rigid shape analysis tools. We show by re-defining surface metric its equi-affine version, with modified tensor treated a canonical Euclidean object on which most classical processing and tools applied. The new definition is used fast marching method technique computing geodesic distances surfaces, where now, are defined respect an arclength. Applications proposed framework demonstrate invariance, efficiency, accuracy analysis.

参考文章(29)
Pu-chʿing Su, Affine differential geometry Science Press , Gordon and Breach. ,(1983)
Alfred M. Bruckstein, Doron Shaked, On Projective Invariant Smoothing and Evolutions of PlanarCurves and Polygons Journal of Mathematical Imaging and Vision. ,vol. 7, pp. 225- 240 ,(1997) , 10.1023/A:1008226427785
Xingwei Yang, Nagesh Adluru, Longin Jan Latecki, Xiang Bai, Zygmunt Pizlo, Symmetry of Shapes Via Self-similarity international symposium on visual computing. pp. 561- 570 ,(2008) , 10.1007/978-3-540-89646-3_55
Alexander M. Bronstein, Artiom Kovnatsky, Michael M. Bronstein, Ron Kimmel, Diffusion framework for geometric and photometric data fusion in non-rigid shape analysis arXiv: Computer Vision and Pattern Recognition. ,(2011)
G. Sapiro, A. Tannenbaum, On Affine Plane Curve Evolution Journal of Functional Analysis. ,vol. 119, pp. 79- 120 ,(1994) , 10.1006/JFAN.1994.1004
K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, T. Kadir, L. Van Gool, A Comparison of Affine Region Detectors International Journal of Computer Vision. ,vol. 65, pp. 43- 72 ,(2005) , 10.1007/S11263-005-3848-X
Alon Spira, Ron Kimmel, An efficient solution to the eikonal equation on parametric manifolds Interfaces and Free Boundaries. ,vol. 6, pp. 315- 327 ,(2004) , 10.4171/IFB/102
Facundo Mémoli, Guillermo Sapiro, A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data Foundations of Computational Mathematics. ,vol. 5, pp. 313- 347 ,(2005) , 10.1007/S10208-004-0145-Y