A Machine-Learning-Based Distributed System for Fault Diagnosis With Scalable Detection Quality in Industrial IoT

作者: Rodrigo Marino , Cristian Wisultschew , Andres Otero , Jose M. Lanza-Gutierrez , Jorge Portilla

DOI: 10.1109/JIOT.2020.3026211

关键词:

摘要: … to distribute fault diagnosis systems in Industry 4.0, based on deploying multiple ML models throughout the plant, one for each node. For the detection of each particular type of fault, the …

参考文章(60)
Leo H. Chiang, Richard D. Braatz, Evan L. Russell, Data-driven Methods for Fault Detection and Diagnosis in Chemical Processes ,(2000)
Brigitte Chebel-Morello, Simon Malinowski, Hafida Senoussi, Feature selection for fault detection systems: application to the Tennessee Eastman process Applied Intelligence. ,vol. 44, pp. 111- 122 ,(2016) , 10.1007/S10489-015-0694-6
A. Jovic, K. Brkic, N. Bogunovic, A review of feature selection methods with applications international convention on information and communication technology electronics and microelectronics. pp. 1200- 1205 ,(2015) , 10.1109/MIPRO.2015.7160458
James Franklin, The elements of statistical learning : data mining, inference,and prediction The Mathematical Intelligencer. ,vol. 27, pp. 83- 85 ,(2005) , 10.1007/BF02985802
Mark A. Hall, Ian H. Witten, Eibe Frank, Data Mining: Practical Machine Learning Tools and Techniques ,(1999)
Christopher M. Bishop, Pattern Recognition and Machine Learning ,(2006)
S. Joe Qin, Survey on data-driven industrial process monitoring and diagnosis Annual Reviews in Control. ,vol. 36, pp. 220- 234 ,(2012) , 10.1016/J.ARCONTROL.2012.09.004
Shen Yin, Steven X. Ding, Adel Haghani, Haiyang Hao, Ping Zhang, A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process Journal of Process Control. ,vol. 22, pp. 1567- 1581 ,(2012) , 10.1016/J.JPROCONT.2012.06.009
Adithyan Palaniappan, R. Bhargavi, V. Vaidehi, Abnormal human activity recognition using SVM based approach international conference on recent trends in information technology. pp. 97- 102 ,(2012) , 10.1109/ICRTIT.2012.6206829