Schur–Weyl Reciprocity for Ariki–Koike Algebras

作者: Masahiro Sakamoto , Toshiaki Shoji

DOI: 10.1006/JABR.1999.7973

关键词:

摘要: Let g = glm1 ⊕ ··· glmr be a Levi subalgebra of glm, with m ∑ri 1mi, and V the natural representation quantum group Uq(g). We construct Ariki–Koike algebra Hn, r on n-fold tensor space V, commuting action Uq(g), prove Schur–Weyl reciprocity for actions Uq(g) it.

参考文章(5)
S. Ariki, K. Koike, A Hecke Algebra of (Z/rZ)Sn and Construction of Its Irreducible Representations Advances in Mathematics. ,vol. 106, pp. 216- 243 ,(1994) , 10.1006/AIMA.1994.1057
S. Ariki, T. Terasoma, H. Yamada, Schur-Weyl Reciprocity for the Hecke Algebra of (Z/rZ) ≀ Sn Journal of Algebra. ,vol. 178, pp. 374- 390 ,(1995) , 10.1006/JABR.1995.1354
Michio Jimbo, A q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation Letters in Mathematical Physics. ,vol. 11, pp. 247- 252 ,(1986) , 10.1007/BF00400222
Kimio Ueno, Tadayoshi Takebayashi, Youichi Shibukawa, Gelfand-Zetlin basis for Uq(gl(N+1)) modules Letters in Mathematical Physics. ,vol. 18, pp. 215- 221 ,(1989) , 10.1007/BF00399970