Hardy's nonlocality for entangled states of three particles

作者: Sibasish Ghosh , G Kar , Debasis Sarkar

DOI: 10.1016/S0375-9601(98)00306-5

关键词:

摘要: Abstract For any given entangled state of three spin - 1 2 particles, Hardy's nonlocality is algebraically proved choosing a pair observables corresponding to each particle. Surprisingly it has been found that maximally particles shows with maximum probability 12.5%, which higher than the for two particles.

参考文章(11)
N. David Mermin, Quantum mysteries refined American Journal of Physics. ,vol. 62, pp. 880- 887 ,(1994) , 10.1119/1.17733
Xiao-hua Wu, Rui-hua Xie, Hardy's nonlocality theorem for three spin-half particles Physics Letters A. ,vol. 211, pp. 129- 133 ,(1996) , 10.1016/0375-9601(95)00957-4
Sandu Popescu, Daniel Rohrlich, Which states violate Bell's inequality maximally? Physics Letters A. ,vol. 169, pp. 411- 414 ,(1992) , 10.1016/0375-9601(92)90819-8
G. Kar, Testing Hardy's nonlocality with n spin-1/2 particles Physical Review A. ,vol. 56, pp. 1023- 1024 ,(1997) , 10.1103/PHYSREVA.56.1023
J. Schlienz, G. Mahler, The maximal entangled three-particle state is unique Physics Letters A. ,vol. 224, pp. 39- 44 ,(1996) , 10.1016/S0375-9601(96)00803-1
Constantine Pagonis, Robert Clifton, Hardy's nonlocality theorem for n spin- {1}/{2} particles Physics Letters A. ,vol. 168, pp. 100- 102 ,(1992) , 10.1016/0375-9601(92)90070-3
Sheldon Goldstein, Nonlocality without inequalities for almost all entangled states for two particles. Physical Review Letters. ,vol. 72, pp. 1951- 1951 ,(1994) , 10.1103/PHYSREVLETT.72.1951
G. Kar, Hardy's nonlocality for mixed states Physics Letters A. ,vol. 228, pp. 119- 120 ,(1997) , 10.1016/S0375-9601(97)00116-3