Hardy's nonlocality for mixed states

作者: G. Kar

DOI: 10.1016/S0375-9601(97)00116-3

关键词:

摘要: Abstract For a system of two spin - 1 2 particles, no mixed state admits Hardy-type nonlocality. There are states for three particles which show

参考文章(10)
N. David Mermin, Quantum mysteries refined American Journal of Physics. ,vol. 62, pp. 880- 887 ,(1994) , 10.1119/1.17733
N. Gisin, Bell’s inequality holds for all non-product states. Physics Letters A. ,vol. 154, pp. 201- 202 ,(1991) , 10.1016/0375-9601(91)90805-I
Xiao-hua Wu, Rui-hua Xie, Hardy's nonlocality theorem for three spin-half particles Physics Letters A. ,vol. 211, pp. 129- 133 ,(1996) , 10.1016/0375-9601(95)00957-4
R. Horodecki, P. Horodecki, M. Horodecki, Violating Bell inequality by mixed spin-12 states: necessary and sufficient condition Physics Letters A. ,vol. 200, pp. 340- 344 ,(1995) , 10.1016/0375-9601(95)00214-N
Samuel L. Braunstein, A. Mann, M. Revzen, Maximal violation of Bell inequalities for mixed states Physical Review Letters. ,vol. 68, pp. 3259- 3261 ,(1992) , 10.1103/PHYSREVLETT.68.3259
Sheldon Goldstein, Nonlocality without inequalities for almost all entangled states for two particles. Physical Review Letters. ,vol. 72, pp. 1951- 1951 ,(1994) , 10.1103/PHYSREVLETT.72.1951
Lucien Hardy, Nonlocality for two particles without inequalities for almost all entangled states Physical Review Letters. ,vol. 71, pp. 1665- 1668 ,(1993) , 10.1103/PHYSREVLETT.71.1665
J. S. Bell, On the Einstein-Podolsky-Rosen paradox Physics. ,vol. 1, pp. 195- 200 ,(1964) , 10.1103/PHYSICSPHYSIQUEFIZIKA.1.195