Generalised self-avoiding walk

作者: L Turban

DOI: 10.1088/0305-4470/16/17/002

关键词:

摘要: A generalisation of the self-avoiding walk is introduced in which k or higher multiple points are forbidden (k=2 corresponds to standard walk). The Flory theory gives radius gyration exponent nu k=(k+1)/((k-1)E+2) when E

参考文章(6)
Paul J. Flory, Principles of polymer chemistry ,(1953)
Cyril Domb, From random to self-avoiding walks Journal of Statistical Physics. ,vol. 30, pp. 425- 436 ,(1983) , 10.1007/BF01012316
Bernard Nienhuis, Exact Critical Point and Critical Exponents of O ( n ) Models in Two Dimensions Physical Review Letters. ,vol. 49, pp. 1062- 1065 ,(1982) , 10.1103/PHYSREVLETT.49.1062
Kenneth G. Wilson, Michael E. Fisher, Critical Exponents in 3.99 Dimensions Physical Review Letters. ,vol. 28, pp. 240- 243 ,(1972) , 10.1103/PHYSREVLETT.28.240
H. E. Stanley, Dependence of critical properties on dimensionality of spins Physical Review Letters. ,vol. 20, pp. 589- 592 ,(1968) , 10.1103/PHYSREVLETT.20.589
P.G. de Gennes, Exponents for the excluded volume problem as derived by the Wilson method Physics Letters A. ,vol. 38, pp. 339- 340 ,(1972) , 10.1016/0375-9601(72)90149-1