DEUM - Distribution Estimation Using Markov Networks

作者: Siddhartha Shakya , John McCall , Alexander Brownlee , Gilbert Owusu

DOI: 10.1007/978-3-642-28900-2_4

关键词:

摘要: DEUM is one of the early EDAs to use Markov Networks as its model of probability distribution. It uses undirected graph to represent variable interaction in the solution, and …

参考文章(49)
S. Shakya, J. McCall, D. F. Brown, Estimating the distribution in an EDA Adaptive and Natural Computing Algorithms. pp. 202- 205 ,(2005) , 10.1007/3-211-27389-1_48
Martin Pelikan, David E. Goldberg, Bayesian optimization algorithm: from single level to hierarchy PhD thesis, University of Illinois at Urbana-Champaign. ,(2002)
Stuart German, Donald German, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images Neurocomputing: foundations of research. pp. 611- 634 ,(1988)
Computational Intelligence in Bioinformatics Springer Publishing Company, Incorporated. ,(2008) , 10.1007/978-3-540-76803-6
Guido Sanguinetti, Neil D. Lawrence, Missing Data in Kernel PCA Lecture Notes in Computer Science. pp. 751- 758 ,(2006) , 10.1007/11871842_76
Matthew Alden, Risto Miikkulainen, MARLEDA: Effective distribution estimation through Markov random fields Theoretical Computer Science. ,vol. 633, pp. 4- 18 ,(2016) , 10.1016/J.TCS.2015.07.049
P.A.N. Bosman, H. Lipson, M. Keijzer, not Cwi, Proceedings of the Genetic and Evolutionary Computation Conference - GECCO - 2006 ACM Press. ,(2006)