Mining Markov Network Surrogates for Value-Added Optimisation

作者: Alexander E.I. Brownlee

DOI: 10.1145/2908961.2931711

关键词:

摘要: Surrogate fitness functions are a popular technique for speeding up metaheuristics, replacing calls to a costly fitness function with calls to a cheap model. However, surrogates …

参考文章(35)
Siddhartha Shakya, John McCall, Alexander Brownlee, Gilbert Owusu, DEUM - Distribution Estimation Using Markov Networks Springer, Berlin, Heidelberg. pp. 55- 71 ,(2012) , 10.1007/978-3-642-28900-2_4
David E. Goldberg, Genetic Algorithms and Walsh Functions: Part II, Deception and Its Analysis. Complex Systems. ,vol. 3, ,(1989)
Iñaki Inza, Endika Bengoetxea, Jose A. Lozano, Pedro Larrañaga, Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms (Studies in Fuzziness and Soft Computing) Springer-Verlag New York, Inc.. ,(2006)
Jose A. Lozano, Pedro Larraanaga, Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation Kluwer Academic Publishers. ,(2001)
Albert Donally Bethke, Genetic algorithms as function optimizers University of Michigan. ,(1980)
Gabriele Valentini, Luigi Malagò, Matteo Matteucci, Optimization by ℓ 1 -constrained Markov fitness modelling learning and intelligent optimization. pp. 250- 264 ,(2012) , 10.1007/978-3-642-34413-8_18
Roberto Santana, Carlos Echegoyen, Alexander Mendiburu, Concha Bielza, Jose A. Lozano, Pedro Larrañaga, Rubén Armañanzas, Siddartha Shakya, Mateda-2.0: A MATLAB Package for the Implementation and Analysis of Estimation of Distribution Algorithms Journal of Statistical Software. ,vol. 35, pp. 1- 30 ,(2010) , 10.18637/JSS.V035.I07
Siddhartha Shakya, Alexander Brownlee, John McCall, Francois Fournier, Gilbert Owusu, A fully multivariate DEUM algorithm congress on evolutionary computation. pp. 479- 486 ,(2009) , 10.1109/CEC.2009.4982984
Alexander E.I. Brownlee, Jonathan A. Wright, Monjur M. Mourshed, A multi-objective window optimisation problem Proceedings of the 13th annual conference companion on Genetic and evolutionary computation - GECCO '11. pp. 89- 90 ,(2011) , 10.1145/2001858.2001910