Automated discovery of test statistics using genetic programming.

作者: Jason H. Moore , Randal S. Olson , Yong Chen , Moshe Sipper

DOI: 10.1007/S10710-018-9338-Z

关键词:

摘要: The process of developing new test statistics is laborious, requiring the manual development and evaluation mathematical functions that satisfy several theoretical properties. Automating this process, hitherto not done, would greatly accelerate discovery much-needed, statistics. This automation a challenging problem because it requires method to know something about desirable properties good statistic in addition having an engine can develop explore candidate solutions with intuitive representation. In paper we describe genetic programming-based system for automated Specifically, our was able discover as powerful t-test comparing sample means from two distributions equal variances.

参考文章(14)
Riccardo Poli, William B. Langdon, Nicholas F. McPhee, John R. Koza, A Field Guide to Genetic Programming ,(2008)
Yong Chen, Yang Ning, Chuan Hong, Shuang Wang, Semiparametric tests for identifying differentially methylated loci with case-control designs using Illumina arrays. Genetic Epidemiology. ,vol. 38, pp. 42- 50 ,(2014) , 10.1002/GEPI.21774
François-Michel De Rainville, Félix-Antoine Fortin, Marc Parizeau, Christian Gagné, Marc-André Gardner Gardner, DEAP: evolutionary algorithms made easy Journal of Machine Learning Research. ,vol. 13, pp. 2171- 2175 ,(2012)
Lee Spector, David M. Clark, Ian Lindsay, Bradford Barr, Jon Klein, Genetic programming for finite algebras Proceedings of the 10th annual conference on Genetic and evolutionary computation - GECCO '08. pp. 1291- 1298 ,(2008) , 10.1145/1389095.1389343
Kasper Daniel Hansen, Winston Timp, Héctor Corrada Bravo, Sarven Sabunciyan, Benjamin Langmead, Oliver G McDonald, Bo Wen, Hao Wu, Yun Liu, Dinh Diep, Eirikur Briem, Kun Zhang, Rafael A Irizarry, Andrew P Feinberg, Increased methylation variation in epigenetic domains across cancer types Nature Genetics. ,vol. 43, pp. 768- 775 ,(2011) , 10.1038/NG.865
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II IEEE Transactions on Evolutionary Computation. ,vol. 6, pp. 182- 197 ,(2002) , 10.1109/4235.996017
K. Gervin, M. Hammero, H. E. Akselsen, R. Moe, H. Nygard, I. Brandt, H. K. Gjessing, J. R. Harris, D. E. Undlien, R. Lyle, Extensive variation and low heritability of DNA methylation identified in a twin study Genome Research. ,vol. 21, pp. 1813- 1821 ,(2011) , 10.1101/GR.119685.110
David Medernach, Jeannie Fitzgerald, R. Muhammad Atif Azad, Conor Ryan, A New Wave: A Dynamic Approach to Genetic Programming genetic and evolutionary computation conference. pp. 757- 764 ,(2016) , 10.1145/2908812.2908857
Chuan Hong, Yang Ning, Shuang Wang, Hao Wu, Raymond J. Carroll, Yong Chen, PLMET: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalilzed Exponential Tilt Mixture Models. Journal of the American Statistical Association. ,vol. 112, pp. 1393- 1404 ,(2017) , 10.1080/01621459.2017.1280405