Model-Free control performance improvement using virtual reference feedback tuning and reinforcement Q-learning

作者: Mircea-Bogdan Radac , Radu-Emil Precup , Raul-Cristian Roman

DOI: 10.1080/00207721.2016.1236423

关键词:

摘要: This paper proposes the combination of two model-free controller tuning techniques, namely linear virtual reference feedback VRFT and nonlinear state-feedback Q-learning, referred to as a new mixed VRFT-Q learning approach. is first used find stabilising using input-output experimental data from process in model tracking setting. Reinforcement Q-learning next applied same setting input-state collected under perturbed ensure good exploration. The learned with batch fitted Q iteration algorithm uses neural networks, one for Q-function estimator controller, respectively. approach validated on position control two-degrees-of-motion open-loop stable multi input-multi output MIMO aerodynamic system AS. Extensive simulations independent channels AS show that controllers clearly improve performance over controllers.

参考文章(52)
Christopher J. C. H. Watkins, Peter Dayan, Technical Note : \cal Q -Learning Machine Learning. ,vol. 8, pp. 279- 292 ,(1992) , 10.1007/BF00992698
Domonkos Tikk, , Zsolt Csaba Johanyák, Szilveszter Kovács, Kok Wai Wong, , , , Fuzzy Rule Interpolation and Extrapolation Techniques: Criteria and Evaluation Guidelines Journal of Advanced Computational Intelligence and Intelligent Informatics. ,vol. 15, pp. 254- 263 ,(2011) , 10.20965/JACIII.2011.P0254
Diego Eckhard, Alexandre Sanfelice Bazanella, Lucola Campestrini, Data-Driven Controller Design: The H2 Approach ,(2011)
Vladimir Volkov, Vladimir Erokhin, Recovering Images, Registered by Device with Inexact Point-Spread Function, Using Tikhonov’s Regularized Least Squares Method International journal of artificial intelligence. ,vol. 13, pp. 123- 134 ,(2015)
Ernestas Filatovas, Dmitry Podkopaev, Olga Kurasova, A Visualization Technique for Accessing Solution Pool in Interactive Methods of Multiobjective Optimization International Journal of Computers Communications & Control. ,vol. 10, pp. 508- 519 ,(2015) , 10.15837/IJCCC.2015.4.1672
Roland Hafner, Martin Riedmiller, Reinforcement learning in feedback control Machine Learning. ,vol. 84, pp. 137- 169 ,(2011) , 10.1007/S10994-011-5235-X
Mircea-Bogdan Radac, Radu-Emil Precup, Emil M. Petriu, Model-Free Primitive-Based Iterative Learning Control Approach to Trajectory Tracking of MIMO Systems With Experimental Validation IEEE Transactions on Neural Networks. ,vol. 26, pp. 2925- 2938 ,(2015) , 10.1109/TNNLS.2015.2460258
Jilie Zhang, Huaguang Zhang, Binrui Wang, Tiaoyang Cai, Nearly data-based optimal control for linear discrete model-free systems with delays via reinforcement learning International Journal of Systems Science. ,vol. 47, pp. 1563- 1573 ,(2016) , 10.1080/00207721.2014.941147