THERMODYNAMIC FORMALISM AND LOCALIZATION IN LORENTZ GASES AND HOPPING MODELS

作者: C. Appert , H. van Beijeren , M. H. Ernst , J. R. Dorfman

DOI: 10.1007/BF02181283

关键词:

摘要: The thermodynamic formalism expresses chaotic properties of dynamical systems in terms the Ruelle pressure ψ(β). inverse-temperature-like variable β allows one to scan structure probability distributin dynamic phase space. This is applied here a lorentz lattice gas. where particle moving on sizeLd collides with fixed scatterers placed at random locations. Here we give rigorous arguments that limit infinite has two branches joining slope discontinuity β=1. low- and high-β correspond localization trajectories respectively “most chaotic” (highest density) region deterministic” (lowest region, i.e. ψ(β) completely controlled by rare fluctuations distribution lattice. it dose not carry information global static disorder. As approaches unity from either side, localization-delocalization transition leads state are extended transprot properties. At finiteL narrow around β=1 scales as (InL)−2. α depends sign 1−β, ifd>1, (L InL)−1 ifd=1. result appears be general for diffusive disorder, such walks environments or continuous Lorentz Other models disordered lattices, showing same phenomenon, discussed.

参考文章(21)
Christian Beck, Friedrich Schögl, Thermodynamics of Chaotic Systems: An Introduction Cambridge University Press. ,(1993) , 10.1017/CBO9780511524585
M. H. Ernst, J. R. Dorfman, Chaos in Lorentz lattice gases 25 Years of Non-Equilibrium Statistical Mechanics. ,vol. 445, pp. 199- 210 ,(1995) , 10.1007/3-540-59158-3_44
Friedrich Schögl, Christian Beck, Thermodynamics of chaotic systems ,(1993)
J.W. Haus, K.W. Kehr, Diffusion in regular and disordered lattices Physics Reports. ,vol. 150, pp. 263- 406 ,(1987) , 10.1016/0370-1573(87)90005-6
J. R. Dorfman, M. H. Ernst, D. Jacobs, Dynamical Chaos in the Lorentz Lattice Gas Journal of Statistical Physics. ,vol. 81, pp. 497- 513 ,(1995) , 10.1007/BF02179990
M. H. Ernst, J. R. Dorfman, R. Nix, D. Jacobs, Mean-field theory for Lyapunov exponents and Kolmogorov-Sinai entropy in Lorentz lattice gases. Physical Review Letters. ,vol. 74, pp. 4416- 4419 ,(1995) , 10.1103/PHYSREVLETT.74.4416
M. D. Donsker, S. R. S. Varadhan, Large deviations from a hydrodynamic scaling limit Communications on Pure and Applied Mathematics. ,vol. 42, pp. 243- 270 ,(1989) , 10.1002/CPA.3160420303
P. Gaspard, F. Baras, Chaotic scattering and diffusion in the Lorentz gas Physical Review E. ,vol. 51, pp. 5332- 5352 ,(1995) , 10.1103/PHYSREVE.51.5332