Chaos in Lorentz lattice gases

作者: M. H. Ernst , J. R. Dorfman

DOI: 10.1007/3-540-59158-3_44

关键词:

摘要: Lorentz lattice gases belong to the category of dynamical systems with positive Lyapunov exponents, and are therefore chaotic. We show using techniques from kinetic theory that these quantities can be computed explicitly.

参考文章(9)
A. Pekalski, Z.M. Galasiewicz, Ordering phenomena in condensed matter physics Teaneck, NJ (United States); World Scientific Pub. Co.. ,(1991)
Christian Beck, Friedrich Schögl, Thermodynamics of Chaotic Systems: An Introduction Cambridge University Press. ,(1993) , 10.1017/CBO9780511524585
M H Ernst, G A van Velzen, Lattice Lorentz gas Journal of Physics A. ,vol. 22, pp. 4611- 4632 ,(1989) , 10.1088/0305-4470/22/21/023
Edward Ott, Chaos in dynamical systems ,(1993)
P. Gaspard, G. Nicolis, Transport properties, Lyapunov exponents, and entropy per unit time. Physical Review Letters. ,vol. 65, pp. 1693- 1696 ,(1990) , 10.1103/PHYSREVLETT.65.1693
Denis J. Evans, E. G. D. Cohen, Gary P. Morriss, Viscosity of a simple fluid from its maximal Lyapunov exponents. Physical Review A. ,vol. 42, pp. 5990- 5997 ,(1990) , 10.1103/PHYSREVA.42.5990
D Frenkel, F. van Luijn, P.-M Binder, Evidence for universal asymptotic decay of velocity fluctuations in Lorentz gases EPL. ,vol. 20, pp. 7- 12 ,(1992) , 10.1209/0295-5075/20/1/002
M. A. Shereshevsky, Lyapunov exponents for one-dimensional cellular automata Journal of Nonlinear Science. ,vol. 2, pp. 1- 8 ,(1992) , 10.1007/BF02429850
F. Bagnoli, R. Rechtman, S. Ruffo, Damage spreading and Lyapunov exponents in cellular automata Physics Letters A. ,vol. 172, pp. 34- 38 ,(1992) , 10.1016/0375-9601(92)90185-O