Maximal s -wise t -intersecting families of sets: kernels, generating sets, and enumeration

作者: Lucia Moura

DOI: 10.1006/JCTA.1998.2946

关键词:

摘要: Abstract A family of k-subsets an n-set is said to be s-wise t-intersecting if |A1∩…∩As|⩾t, for any A1, …, As∈ . For fixed s, n, k, and t, let Is(n, k, t) denote the set all such families. ∈Is(n, k, t) maximal it not properly contained in other Is(n, k, t). We show that s, k, t, there integer n0=n0(k, s, t), which families Is(n0, k, t) completely determine Is(n, k, t), n⩾n0. give a construction Is(n+1, k+1, t+1) based on those Finally, s=2, we classify k=t+1, n⩾t+2, t⩾1, k=t+2, n⩾t+6, t⩾1. The concepts kernels generating sets subsets play important role this work.

参考文章(14)
Lucia Moura, Polyhedral Methods in Design Theory Computational and Constructive Design Theory. pp. 227- 254 ,(1996) , 10.1007/978-1-4757-2497-4_9
P Frankl, Multiply-Intersecting families Journal of Combinatorial Theory, Series B. ,vol. 53, pp. 195- 234 ,(1991) , 10.1016/0095-8956(91)90075-U
Rudolf Ahlswede, Levon H. Khachatrian, The Complete Intersection Theorem for Systems of Finite Sets The Journal of Combinatorics. ,vol. 18, pp. 125- 136 ,(1997) , 10.1006/EUJC.1995.0092
Y. Kohayakawa, A note on kernels of intersecting families The Journal of Combinatorics. ,vol. 11, pp. 155- 164 ,(1990) , 10.1016/S0195-6698(13)80070-4
Peter Frankl, On intersecting families of finite sets Journal of Combinatorial Theory, Series A. ,vol. 24, pp. 146- 161 ,(1978) , 10.1016/0097-3165(78)90003-1
Zsolt Tuza, Critical hypergraphs and intersecting set-pair systems Journal of Combinatorial Theory, Series B. ,vol. 39, pp. 134- 145 ,(1985) , 10.1016/0095-8956(85)90043-7
N. Alon, Z. Füredi, On the kernel of intersecting families Graphs and Combinatorics. ,vol. 3, pp. 91- 94 ,(1987) , 10.1007/BF01788533
P. ERDÓS, CHAO KO, R. RADO, INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS Quarterly Journal of Mathematics. ,vol. 12, pp. 313- 320 ,(1961) , 10.1093/QMATH/12.1.313
Andrzej Ehrenfeucht, Jan Mycielski, Interpolation of functions over a measure space and conjectures about memory Journal of Approximation Theory. ,vol. 9, pp. 218- 236 ,(1973) , 10.1016/0021-9045(73)90089-0