Polyhedral Methods in Design Theory

作者: Lucia Moura

DOI: 10.1007/978-1-4757-2497-4_9

关键词:

摘要: This chapter is devoted to the relation between polyhedral theory and combinatorial designs. The aspects of constructing packings, coverings t-designs are emphasized. Classical results algorithms in summarized, integer programming formulation design construction problems presented, polyhedra associated these formulations related discussed.

参考文章(25)
Earl S. Kramer, David W. Leavitt, Spyros S. Magliveras, Construction Procedures for t-designs and the Existence of New Simple 6–designs North-holland Mathematics Studies. ,vol. 114, pp. 247- 273 ,(1985) , 10.1016/S0304-0208(08)72985-2
Achim Bachem, Martin Grötschel, New aspects of polyhedral theory ,(1982)
D. M. Jackson, Scott A Vanstone, Enumeration and design Academic Press. ,(1984)
Donald Kreher, Stanislaw Radziszowski, Finding Simple T-designs by Using Basis Reduction Congressus Numerantium. ,vol. 55, ,(1986)
W.R. Pulleyblank, Chapter V Polyhedral combinatorics Handbooks in Operations Research and Management Science. ,vol. 1, pp. 371- 446 ,(1989) , 10.1016/S0927-0507(89)01006-6
D. Applegate, V. Chvatal, B. Cook, R. Bixby, Finding Cuts in the TSP (A preliminary report) Center for Discrete Mathematics & Theoretical Computer Science. ,(1995)
Michele Conforti, Derek Gordon Corneil, Ali Ridha Mahjoub, K i -covers I: Complexity and polytopes Discrete Mathematics. ,vol. 58, pp. 121- 142 ,(1986) , 10.1016/0012-365X(86)90156-1
Laurence A. Wolsey, George L. Nemhauser, Integer and Combinatorial Optimization ,(1988)
Egon Balas, Shu Ming Ng, On the set covering polytope: I. all the facets with coefficients in {0, 1, 2} Mathematical Programming. ,vol. 43, pp. 57- 69 ,(1989) , 10.1007/BF01582278
Gérard Cornuéjols, Antonio Sassano, On the 0, 1 facets of the set covering polytope Mathematical Programming. ,vol. 43, pp. 45- 55 ,(1989) , 10.1007/BF01582277